Bohr-Sommerfeld profile surgeries and Disk Potentials

Soham Chanda
{"title":"Bohr-Sommerfeld profile surgeries and Disk Potentials","authors":"Soham Chanda","doi":"arxiv-2409.11603","DOIUrl":null,"url":null,"abstract":"We construct a new surgery type operation by switching between two exact\nfillings of Legendrians which we call a BSP surgery. In certain cases, this\nsurgery can preserve monotonicity of Lagrangians. We prove a wall-crossing type\nformula for the change of the disk-potential under surgery with Bohr-Sommerfeld\nprofiles. As an application, we show that Biran's circle-bundle lifts admit a\nBohr-Sommerfeld type surgery. We use the wall-crossing theorem about\ndisk-potentials to construct exotic monotone Lagrangian tori in $\\bP^n$.","PeriodicalId":501155,"journal":{"name":"arXiv - MATH - Symplectic Geometry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Symplectic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11603","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We construct a new surgery type operation by switching between two exact fillings of Legendrians which we call a BSP surgery. In certain cases, this surgery can preserve monotonicity of Lagrangians. We prove a wall-crossing type formula for the change of the disk-potential under surgery with Bohr-Sommerfeld profiles. As an application, we show that Biran's circle-bundle lifts admit a Bohr-Sommerfeld type surgery. We use the wall-crossing theorem about disk-potentials to construct exotic monotone Lagrangian tori in $\bP^n$.
玻尔-索默菲尔德剖面手术和磁盘电位
我们通过在两个精确填充的拉格朗日之间切换,构建了一种新的外科手术,我们称之为 BSP 手术。在某些情况下,这种手术可以保持拉格朗日的单调性。我们证明了在玻尔-索默费尔德配置下,盘势在手术中变化的穿墙类型公式。作为应用,我们证明了比兰的圆捆绑提升可以接受玻尔-索默费尔德类型的手术。我们利用关于盘势的壁交定理来构造 $\bP^n$ 中的奇异单调拉格朗日转矩。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信