Counting in Calabi--Yau categories, with applications to Hall algebras and knot polynomials

Mikhail Gorsky, Fabian Haiden
{"title":"Counting in Calabi--Yau categories, with applications to Hall algebras and knot polynomials","authors":"Mikhail Gorsky, Fabian Haiden","doi":"arxiv-2409.10154","DOIUrl":null,"url":null,"abstract":"We show that homotopy cardinality -- a priori ill-defined for many\ndg-categories, including all periodic ones -- has a reasonable definition for\neven-dimensional Calabi--Yau (evenCY) categories and their relative\ngeneralizations (under appropriate finiteness conditions). As a first application we solve the problem of defining an intrinsic Hall\nalgebra for degreewise finite pre-triangulated dg-categories in the case of\noddCY categories. We compare this definition with To\\\"en's derived Hall\nalgebras (in case they are well-defined) and with other approaches based on\nextended Hall algebras and central reduction, including a construction of Hall\nalgebras associated with Calabi--Yau triples of triangulated categories. For a\ncategory equivalent to the root category of a 1CY abelian category $\\mathcal\nA$, the algebra is shown to be isomorphic to the Drinfeld double of the twisted\nRingel--Hall algebra of $\\mathcal A$, thus resolving in the Calabi--Yau case\nthe long-standing problem of realizing the latter as a Hall algebra\nintrinsically defined for such a triangulated category. Our second application is the proof of a conjecture of\nNg--Rutherford--Shende--Sivek, which provides an intrinsic formula for the\nruling polynomial of a Legendrian knot $L$, and its generalization to\nLegendrian tangles, in terms of the augmentation category of $L$.","PeriodicalId":501155,"journal":{"name":"arXiv - MATH - Symplectic Geometry","volume":"31 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Symplectic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We show that homotopy cardinality -- a priori ill-defined for many dg-categories, including all periodic ones -- has a reasonable definition for even-dimensional Calabi--Yau (evenCY) categories and their relative generalizations (under appropriate finiteness conditions). As a first application we solve the problem of defining an intrinsic Hall algebra for degreewise finite pre-triangulated dg-categories in the case of oddCY categories. We compare this definition with To\"en's derived Hall algebras (in case they are well-defined) and with other approaches based on extended Hall algebras and central reduction, including a construction of Hall algebras associated with Calabi--Yau triples of triangulated categories. For a category equivalent to the root category of a 1CY abelian category $\mathcal A$, the algebra is shown to be isomorphic to the Drinfeld double of the twisted Ringel--Hall algebra of $\mathcal A$, thus resolving in the Calabi--Yau case the long-standing problem of realizing the latter as a Hall algebra intrinsically defined for such a triangulated category. Our second application is the proof of a conjecture of Ng--Rutherford--Shende--Sivek, which provides an intrinsic formula for the ruling polynomial of a Legendrian knot $L$, and its generalization to Legendrian tangles, in terms of the augmentation category of $L$.
卡拉比--尤范畴中的计数,以及在霍尔代数和结多项式中的应用
我们证明了同调万有性(homotopy cardinality)--对于许多dg范畴(包括所有周期性范畴)来说都是先验定义不良的--对于七维卡拉比-尤(evenCY)范畴及其相对泛化(在适当的有限性条件下)有一个合理的定义。作为第一个应用,我们解决了在oddCY范畴的情况下定义度上有限的前三角dg范畴的本征哈勒代数的问题。我们把这个定义与托(To\"en)的派生霍尔果斯(在它们定义良好的情况下)以及其他基于扩展霍尔果斯和中心还原的方法进行了比较,包括与三角化范畴的卡拉比--尤三元组相关的霍尔果斯的构造。对于一个等价于1CY无性范畴$\mathcalA$的根范畴,这个代数被证明与$\mathcal A$的扭曲林格尔--霍尔代数的德林费尔德双重同构,从而在卡拉比--尤的情况下解决了长期存在的问题,即实现后者作为一个霍尔代数本质上是为这样一个三角范畴定义的。我们的第二个应用是证明了Ng--Rutherford--Shende--Sivek的一个猜想,这个猜想提供了一个Legendrian结$L$的theruling多项式的内在公式,以及它对Legendrian缠结的概括,用$L$的增强范畴来表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信