The focus-focus addition graph is immersed

Mohammed Abouzaid, Nathaniel Bottman, Yunpeng Niu
{"title":"The focus-focus addition graph is immersed","authors":"Mohammed Abouzaid, Nathaniel Bottman, Yunpeng Niu","doi":"arxiv-2409.10377","DOIUrl":null,"url":null,"abstract":"For a symplectic 4-manifold $M$ equipped with a singular Lagrangian fibration\nwith a section, the natural fiberwise addition given by the local Hamiltonian\nflow is well-defined on the regular points. We prove, in the case that the\nsingularities are of focus-focus type, that the closure of the corresponding\naddition graph is the image of a Lagrangian immersion in $(M \\times M)^- \\times\nM$, and we study its geometry. Our main motivation for this result is the\nconstruction of a symmetric monoidal structure on the Fukaya category of such a\nmanifold.","PeriodicalId":501155,"journal":{"name":"arXiv - MATH - Symplectic Geometry","volume":"43 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Symplectic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10377","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For a symplectic 4-manifold $M$ equipped with a singular Lagrangian fibration with a section, the natural fiberwise addition given by the local Hamiltonian flow is well-defined on the regular points. We prove, in the case that the singularities are of focus-focus type, that the closure of the corresponding addition graph is the image of a Lagrangian immersion in $(M \times M)^- \times M$, and we study its geometry. Our main motivation for this result is the construction of a symmetric monoidal structure on the Fukaya category of such a manifold.
焦点-焦点加法图沉浸在
对于具有奇异拉格朗日纤维截面的交点 4-manifold $M$,局部哈密顿流给出的自然纤维加法在规则点上定义明确。我们证明,在奇点是焦点-焦点类型的情况下,相应加法图的闭包是 $(M \times M)^- \timesM$ 中拉格朗日浸入的图像,并研究了它的几何性质。我们得出这一结果的主要动机是在这种amanifold 的 Fukaya 范畴上构造了一个对称单环结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信