Pressure path metrics on parabolic families of polynomials

Fabrizio Bianchi, Yan Mary He
{"title":"Pressure path metrics on parabolic families of polynomials","authors":"Fabrizio Bianchi, Yan Mary He","doi":"arxiv-2409.10462","DOIUrl":null,"url":null,"abstract":"Let $\\Lambda$ be a subfamily of the moduli space of degree $D\\ge2$\npolynomials defined by a finite number of parabolic relations. Let $\\Omega$ be\na bounded stable component of $\\Lambda$ with the property that all critical\npoints are attracted by either the persistent parabolic cycles or by attracting\ncycles in $\\mathbb C$. We construct a positive semi-definite pressure form on\n$\\Omega$ and show that it defines a path metric on $\\Omega$. This provides a\ncounterpart in complex dynamics of the pressure metric on cusped Hitchin\ncomponents recently studied by Kao and Bray-Canary-Kao-Martone.","PeriodicalId":501271,"journal":{"name":"arXiv - MATH - Geometric Topology","volume":"194 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Geometric Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10462","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let $\Lambda$ be a subfamily of the moduli space of degree $D\ge2$ polynomials defined by a finite number of parabolic relations. Let $\Omega$ be a bounded stable component of $\Lambda$ with the property that all critical points are attracted by either the persistent parabolic cycles or by attracting cycles in $\mathbb C$. We construct a positive semi-definite pressure form on $\Omega$ and show that it defines a path metric on $\Omega$. This provides a counterpart in complex dynamics of the pressure metric on cusped Hitchin components recently studied by Kao and Bray-Canary-Kao-Martone.
抛物线多项式族上的压力路径度量
让 $\Lambda$ 是由有限个抛物线关系定义的度 $D\ge2$ 多项式模空间的一个子族。让 $\Omega$ 成为 $\Lambda$ 的有界稳定分量,其性质是所有临界点都被持续抛物循环或 $\mathbb C$ 中的吸引循环所吸引。我们在 $\Omega$ 上构造了一个正半有限压力形式,并证明它定义了 $\Omega$ 上的路径度量。这与 Kao 和 Bray-Canary-Kao-Martone 最近研究的尖顶希钦成分上的压力度量提供了复动力学上的对应关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信