Some Quillen Equivalences for Model Categories

IF 0.7 4区 数学 Q2 MATHEMATICS
Wenjing Chen
{"title":"Some Quillen Equivalences for Model Categories","authors":"Wenjing Chen","doi":"10.1007/s41980-024-00911-x","DOIUrl":null,"url":null,"abstract":"<p>Let <span>\\(({\\mathcal {L}}, {\\mathcal {A}})\\)</span> be a complete duality pair. When <i>R</i> is a commutative ring, we prove a Quillen equivalence induced by a Sharp–Foxby adjunction on <i>R</i>-Mod associated to <span>\\(({\\mathcal {L}}, {\\mathcal {A}})\\)</span> between the Gorenstein <span>\\(({\\mathcal {L}}, {\\mathcal {A}})\\)</span>-projective and injective model categories, which results in a triangle equivalence between the stable category of Gorenstein <span>\\(({\\mathcal {L}}, {\\mathcal {A}})\\)</span>-projective modules and the stable category of Gorenstein <span>\\(({\\mathcal {L}}, {\\mathcal {A}})\\)</span>-injective modules. In addition, let <i>R</i> and <span>\\(R^{\\prime }\\)</span> be two (not necessarily commutative) rings. Under some conditions, we investigate the other Quillen equivalence between two Gorenstein <span>\\(({\\mathcal {L}}, {\\mathcal {A}})\\)</span>-projective model categories and prove that two stable categories consisting of all Gorenstein <span>\\(({\\mathcal {L}}, {\\mathcal {A}})\\)</span>-projective <i>R</i>-modules and all Gorenstein <span>\\(({\\mathcal {L}}, {\\mathcal {A}})\\)</span>-projective <span>\\(R^{\\prime }\\)</span>-modules respectively are triangle equivalent by Frobenius functors.</p>","PeriodicalId":9395,"journal":{"name":"Bulletin of The Iranian Mathematical Society","volume":"187 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of The Iranian Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s41980-024-00911-x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let \(({\mathcal {L}}, {\mathcal {A}})\) be a complete duality pair. When R is a commutative ring, we prove a Quillen equivalence induced by a Sharp–Foxby adjunction on R-Mod associated to \(({\mathcal {L}}, {\mathcal {A}})\) between the Gorenstein \(({\mathcal {L}}, {\mathcal {A}})\)-projective and injective model categories, which results in a triangle equivalence between the stable category of Gorenstein \(({\mathcal {L}}, {\mathcal {A}})\)-projective modules and the stable category of Gorenstein \(({\mathcal {L}}, {\mathcal {A}})\)-injective modules. In addition, let R and \(R^{\prime }\) be two (not necessarily commutative) rings. Under some conditions, we investigate the other Quillen equivalence between two Gorenstein \(({\mathcal {L}}, {\mathcal {A}})\)-projective model categories and prove that two stable categories consisting of all Gorenstein \(({\mathcal {L}}, {\mathcal {A}})\)-projective R-modules and all Gorenstein \(({\mathcal {L}}, {\mathcal {A}})\)-projective \(R^{\prime }\)-modules respectively are triangle equivalent by Frobenius functors.

模型类别的一些奎伦等价关系
让 \(({\mathcal {L}}, {\mathcal {A}})\) 成为一对完整的对偶。当 R 是交换环时,我们证明了与 \(({\mathcal {L}}, {\mathcal {A}}) 相关的 R-Mod 上的夏普-福克斯比(Sharp-Foxby)矢函数所诱导的高伦斯坦(({/mathcal {L}}, {\mathcal {A}}))投影模型范畴和注入模型范畴之间的奎伦等价性、这导致了 Gorenstein \(({\mathcal {L}}, {\mathcal {A}})-投影模块的稳定范畴和 Gorenstein \(({\mathcal {L}}, {\mathcal {A}})-注入模块的稳定范畴之间的三角等价。此外,让 R 和 \(R^{\prime }\) 是两个(不一定是交换)环。在一些条件下,我们研究了两个 Gorenstein \(({\mathcal {L}}, {\mathcal {A}})-投影模型范畴之间的另一个 Quillen 等价性,并证明了由所有 Gorenstein \(({\mathcal {L}}, {\mathcal {A}})-投影模型范畴组成的两个稳定范畴、{R 模块和所有 Gorenstein \(({\mathcal {L}}, {\mathcal {A}})-投影 \(R^{\prime })-模块分别组成的两个稳定范畴通过 Frobenius 函数是三角等价的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bulletin of The Iranian Mathematical Society
Bulletin of The Iranian Mathematical Society Mathematics-General Mathematics
CiteScore
1.40
自引率
0.00%
发文量
64
期刊介绍: The Bulletin of the Iranian Mathematical Society (BIMS) publishes original research papers as well as survey articles on a variety of hot topics from distinguished mathematicians. Research papers presented comprise of innovative contributions while expository survey articles feature important results that appeal to a broad audience. Articles are expected to address active research topics and are required to cite existing (including recent) relevant literature appropriately. Papers are critically reviewed on the basis of quality in its exposition, brevity, potential applications, motivation, value and originality of the results. The BIMS takes a high standard policy against any type plagiarism. The editorial board is devoted to solicit expert referees for a fast and unbiased review process.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信