A scalable approach to absolute quantitation in metabolomics

Luke S Ferro, Alan Y. L. Wong, Jack Howland, Ana S. H. Costa, Jefferson G. Pruyne, Devesh Shah, Joshua D. Lauterbach, Steven B. Hooper, Mimoun Cadosch Delmar, Jack Geremia, Timothy Kassis, Naama Kanarek, Jennifer M. Campbell
{"title":"A scalable approach to absolute quantitation in metabolomics","authors":"Luke S Ferro, Alan Y. L. Wong, Jack Howland, Ana S. H. Costa, Jefferson G. Pruyne, Devesh Shah, Joshua D. Lauterbach, Steven B. Hooper, Mimoun Cadosch Delmar, Jack Geremia, Timothy Kassis, Naama Kanarek, Jennifer M. Campbell","doi":"10.1101/2024.09.09.609906","DOIUrl":null,"url":null,"abstract":"Mass spectrometry-based metabolomics allows for the quantitation of metabolite levels in diverse biological samples. The traditional method of converting peak areas to absolute concentrations involves the use of matched heavy isotopologues. However, this approach is laborious and limited to a small number of metabolites. We addressed these limitations by developing PyxisTM, a machine learning-based technology which converts raw mass spectrometry data to absolute concentration measurements without the need for per-analyte standards. Here, we demonstrate Pyxis performance by quantifying metabolome concentration dynamics in murine blood plasma. Pyxis performed equivalently to traditional quantitation workflows used by research institutions, with a fraction of the time needed for analysis. We show that absolute quantitation by Pyxis can be expanded to include concentrations for additional metabolites, without the need to acquire new data. Furthermore, Pyxis allows for absolute quantitation as part of an untargeted metabolomics workflow. By removing the bottleneck of per-analyte standards, Pyxis allows for absolute quantitation in metabolomics that is scalable to large numbers of metabolites. The ability of Pyxis to make concentration-based measurements across the metabolome has the potential to deepen our understanding of diverse metabolic perturbations.","PeriodicalId":501213,"journal":{"name":"bioRxiv - Systems Biology","volume":"43 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Systems Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.09.609906","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Mass spectrometry-based metabolomics allows for the quantitation of metabolite levels in diverse biological samples. The traditional method of converting peak areas to absolute concentrations involves the use of matched heavy isotopologues. However, this approach is laborious and limited to a small number of metabolites. We addressed these limitations by developing PyxisTM, a machine learning-based technology which converts raw mass spectrometry data to absolute concentration measurements without the need for per-analyte standards. Here, we demonstrate Pyxis performance by quantifying metabolome concentration dynamics in murine blood plasma. Pyxis performed equivalently to traditional quantitation workflows used by research institutions, with a fraction of the time needed for analysis. We show that absolute quantitation by Pyxis can be expanded to include concentrations for additional metabolites, without the need to acquire new data. Furthermore, Pyxis allows for absolute quantitation as part of an untargeted metabolomics workflow. By removing the bottleneck of per-analyte standards, Pyxis allows for absolute quantitation in metabolomics that is scalable to large numbers of metabolites. The ability of Pyxis to make concentration-based measurements across the metabolome has the potential to deepen our understanding of diverse metabolic perturbations.
代谢组学绝对定量的可扩展方法
基于质谱的代谢组学可对各种生物样本中的代谢物水平进行定量分析。将峰面积转换为绝对浓度的传统方法包括使用匹配的重同位素。然而,这种方法费时费力,而且仅限于少量代谢物。我们通过开发 PyxisTM 解决了这些局限性,这是一种基于机器学习的技术,可将原始质谱数据转换为绝对浓度测量值,而无需每种分析物的标准。在这里,我们通过量化小鼠血浆中代谢组的浓度动态来展示 Pyxis 的性能。Pyxis 的性能与研究机构使用的传统定量工作流程相当,而分析所需的时间只是其一小部分。我们的研究表明,Pyxis 的绝对定量分析可以扩展到其他代谢物的浓度,而无需获取新的数据。此外,Pyxis 还能将绝对定量作为非靶向代谢组学工作流程的一部分。通过消除每个分析物标准的瓶颈,Pyxis 可以在代谢组学中进行绝对定量,并可扩展到大量代谢物。Pyxis 能够对整个代谢组进行基于浓度的测量,有望加深我们对各种代谢扰动的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信