Improving Analog Neural Network Robustness: A Noise-Agnostic Approach with Explainable Regularizations

Alice Duque, Pedro Freire, Egor Manuylovich, Dmitrii Stoliarov, Jaroslaw Prilepsky, Sergei Turitsyn
{"title":"Improving Analog Neural Network Robustness: A Noise-Agnostic Approach with Explainable Regularizations","authors":"Alice Duque, Pedro Freire, Egor Manuylovich, Dmitrii Stoliarov, Jaroslaw Prilepsky, Sergei Turitsyn","doi":"arxiv-2409.08633","DOIUrl":null,"url":null,"abstract":"This work tackles the critical challenge of mitigating \"hardware noise\" in\ndeep analog neural networks, a major obstacle in advancing analog signal\nprocessing devices. We propose a comprehensive, hardware-agnostic solution to\naddress both correlated and uncorrelated noise affecting the activation layers\nof deep neural models. The novelty of our approach lies in its ability to\ndemystify the \"black box\" nature of noise-resilient networks by revealing the\nunderlying mechanisms that reduce sensitivity to noise. In doing so, we\nintroduce a new explainable regularization framework that harnesses these\nmechanisms to significantly enhance noise robustness in deep neural\narchitectures.","PeriodicalId":501214,"journal":{"name":"arXiv - PHYS - Optics","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Optics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08633","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This work tackles the critical challenge of mitigating "hardware noise" in deep analog neural networks, a major obstacle in advancing analog signal processing devices. We propose a comprehensive, hardware-agnostic solution to address both correlated and uncorrelated noise affecting the activation layers of deep neural models. The novelty of our approach lies in its ability to demystify the "black box" nature of noise-resilient networks by revealing the underlying mechanisms that reduce sensitivity to noise. In doing so, we introduce a new explainable regularization framework that harnesses these mechanisms to significantly enhance noise robustness in deep neural architectures.
提高模拟神经网络的鲁棒性:采用可解释正则化的噪声诊断方法
这项研究解决了减轻模拟神经网络中的 "硬件噪声 "这一关键挑战,而 "硬件噪声 "是推动模拟信号处理设备发展的主要障碍。我们提出了一种全面的、与硬件无关的解决方案,以解决影响深度神经模型激活层的相关和非相关噪声。我们的方法的新颖之处在于,它能够通过揭示降低对噪声敏感性的基本机制来揭示抗噪声网络的 "黑箱 "本质。在此过程中,我们引入了一种新的可解释正则化框架,利用这些机制显著增强深度神经架构的噪声鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信