A group-IV double heterostructure light emitting diode for room temperature gain in Silicon

Andreas Salomon, Johannes Aberl, Lada Vukušić, Enrique Prado-Navarrete, Jacqueline Marböck, Diego-Haya Enriquez, Jeffrey Schuster, Kari Martinez, Heiko Groiss, Thomas Fromherz, Moritz Brehm
{"title":"A group-IV double heterostructure light emitting diode for room temperature gain in Silicon","authors":"Andreas Salomon, Johannes Aberl, Lada Vukušić, Enrique Prado-Navarrete, Jacqueline Marböck, Diego-Haya Enriquez, Jeffrey Schuster, Kari Martinez, Heiko Groiss, Thomas Fromherz, Moritz Brehm","doi":"arxiv-2409.11081","DOIUrl":null,"url":null,"abstract":"The lack of straightforward epitaxial integration of useful telecom lasers on\nsilicon remains the major bottleneck for bringing optical interconnect\ntechnology down to the on-chip level. Crystalline silicon itself, an indirect\nsemiconductor, is a poor light emitter. Here, we identify conceptionally simple\nSi/Si$_{1-x}$Ge$_x$/Si double heterostructures (DHS) with large Ge content ($x\n\\gtrsim 0.4$) as auspicious gain material suitable for Si-based integrated\noptics. In particular, using self-consistent Poisson-current transport\ncalculations, we show that Si diodes containing a 16 nm thick Si$_{1-x}$Ge$_x$\nlayer of high crystalline quality, centered at the p-n junction, results in\nefficient carrier accumulation in the DHS and gain if the diode is driven in\nforward direction. Despite the high strain, we unambiguously demonstrate that\nsuch prior unattainable defect-free DHS can be fabricated using ultra-low\ntemperature epitaxy at pristine growth pressures. Telecom light emission is\npersistent up to 360 K, and directly linked to a ~160 meV high conduction band\nbarrier for minority electron injection. This epitaxy approach allows further\nincreasing the Ge content in the DHS and creating dot-in-well heterostructures\nfor which even higher gains are predicted. Thus, the surprisingly facile DHS\npresented here can be an essential step toward novel classes of group-IV\noptoelectronic devices for silicon photonics.","PeriodicalId":501214,"journal":{"name":"arXiv - PHYS - Optics","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Optics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The lack of straightforward epitaxial integration of useful telecom lasers on silicon remains the major bottleneck for bringing optical interconnect technology down to the on-chip level. Crystalline silicon itself, an indirect semiconductor, is a poor light emitter. Here, we identify conceptionally simple Si/Si$_{1-x}$Ge$_x$/Si double heterostructures (DHS) with large Ge content ($x \gtrsim 0.4$) as auspicious gain material suitable for Si-based integrated optics. In particular, using self-consistent Poisson-current transport calculations, we show that Si diodes containing a 16 nm thick Si$_{1-x}$Ge$_x$ layer of high crystalline quality, centered at the p-n junction, results in efficient carrier accumulation in the DHS and gain if the diode is driven in forward direction. Despite the high strain, we unambiguously demonstrate that such prior unattainable defect-free DHS can be fabricated using ultra-low temperature epitaxy at pristine growth pressures. Telecom light emission is persistent up to 360 K, and directly linked to a ~160 meV high conduction band barrier for minority electron injection. This epitaxy approach allows further increasing the Ge content in the DHS and creating dot-in-well heterostructures for which even higher gains are predicted. Thus, the surprisingly facile DHS presented here can be an essential step toward novel classes of group-IV optoelectronic devices for silicon photonics.
用于硅室温增益的第 IV 组双异质结构发光二极管
在硅片上无法直接外延集成有用的电信激光器,仍然是将光互连技术应用到芯片级的主要瓶颈。晶体硅本身是一种间接半导体,发光性能很差。在这里,我们发现概念上简单的硅/硅$_{1-x}$Ge$_x$/硅双异质结构(DHS)具有较大的 Ge 含量($x\gtrsim 0.4$),是适合硅基集成光学的吉祥增益材料。利用自洽泊松电流输运计算,我们特别发现,以 p-n 结为中心、含有 16 nm 厚、结晶质量高的 Si$_{1-x}$Ge$_x$ 层的硅二极管,在二极管向下驱动时,会导致 DHS 中载流子积累和增益效率低下。尽管存在高应变,我们还是明确地证明,这种以前无法实现的无缺陷 DHS 可以在原始生长压力下利用超低温外延技术制造出来。电信光发射可持续到 360 K,并与用于少数电子注入的 ~160 meV 高传导带垒直接相关。通过这种外延方法,可以进一步提高 DHS 中的 Ge 含量,并制造出点-阱异质结构,从而获得更高的增益。因此,这里介绍的令人惊讶的简易 DHS 可以成为硅光子学新型 IV 族光电器件的重要一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信