Convergent-beam attosecond X-ray crystallography

Henry N. Chapman, Chufeng Li, Saša Bajt, Mansi Butola, J. Lukas Dresselhaus, Dmitry Egorov, Holger Fleckenstein, Nikolay Ivanov, Antonia Kiene, Bjarne Klopprogge, Viviane Kremling, Philipp Middendorf, Dominik Oberthuer, Mauro Prasciolu, T. Emilie S. Scheer, Janina Sprenger, Jia Chyi Wong, Oleksandr Yefanov, Margarita Zakharova, Wenhui Zhang
{"title":"Convergent-beam attosecond X-ray crystallography","authors":"Henry N. Chapman, Chufeng Li, Saša Bajt, Mansi Butola, J. Lukas Dresselhaus, Dmitry Egorov, Holger Fleckenstein, Nikolay Ivanov, Antonia Kiene, Bjarne Klopprogge, Viviane Kremling, Philipp Middendorf, Dominik Oberthuer, Mauro Prasciolu, T. Emilie S. Scheer, Janina Sprenger, Jia Chyi Wong, Oleksandr Yefanov, Margarita Zakharova, Wenhui Zhang","doi":"arxiv-2409.11127","DOIUrl":null,"url":null,"abstract":"Sub-angstrom spatial resolution of electron density coupled with\nsub-femtosecond temporal resolution is required to directly observe the\ndynamics of the electronic structure of a molecule after photoinitiation or\nsome other ultrafast perturbation. Meeting this challenge, pushing the field of\nquantum crystallography to attosecond timescales, would bring insights into how\nthe electronic and nuclear degrees of freedom couple, enable the study of\nquantum coherences involved in molecular dynamics, and ultimately enable these\ndynamics to be controlled. Here we propose to reach this realm by employing\nconvergent-beam X-ray crystallography with high-power attosecond pulses from a\nhard-X-ray free-electron laser. We show that with dispersive optics, such as\nmultilayer Laue lenses of high numerical aperture, it becomes possible to\nencode time into the resulting diffraction pattern with deep sub-femtosecond\nprecision. Each snapshot diffraction pattern consists of Bragg streaks that can\nbe mapped back to arrival times and positions of X-rays on the face of a\ncrystal. This can span tens of femtoseconds, and can be finely sampled as we\ndemonstrate experimentally. The approach brings several other advantages, such\nas an increase of the number of observable reflections in a snapshot\ndiffraction pattern, all fully integrated, to improve the speed and accuracy of\nserial crystallography -- especially for crystals of small molecules.","PeriodicalId":501214,"journal":{"name":"arXiv - PHYS - Optics","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Optics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Sub-angstrom spatial resolution of electron density coupled with sub-femtosecond temporal resolution is required to directly observe the dynamics of the electronic structure of a molecule after photoinitiation or some other ultrafast perturbation. Meeting this challenge, pushing the field of quantum crystallography to attosecond timescales, would bring insights into how the electronic and nuclear degrees of freedom couple, enable the study of quantum coherences involved in molecular dynamics, and ultimately enable these dynamics to be controlled. Here we propose to reach this realm by employing convergent-beam X-ray crystallography with high-power attosecond pulses from a hard-X-ray free-electron laser. We show that with dispersive optics, such as multilayer Laue lenses of high numerical aperture, it becomes possible to encode time into the resulting diffraction pattern with deep sub-femtosecond precision. Each snapshot diffraction pattern consists of Bragg streaks that can be mapped back to arrival times and positions of X-rays on the face of a crystal. This can span tens of femtoseconds, and can be finely sampled as we demonstrate experimentally. The approach brings several other advantages, such as an increase of the number of observable reflections in a snapshot diffraction pattern, all fully integrated, to improve the speed and accuracy of serial crystallography -- especially for crystals of small molecules.
聚合束阿秒 X 射线晶体学
要直接观察光引发或其他超快扰动后分子电子结构的动力学,需要电子密度的亚埃级空间分辨率和亚飞秒时间分辨率。应对这一挑战,将量子晶体学领域推进到阿秒级,将有助于深入了解电子和核自由度如何耦合,从而能够研究分子动力学中涉及的量子相干性,并最终能够控制分子动力学。在这里,我们建议通过使用硬 X 射线自由电子激光器发出的高功率阿秒脉冲来进行汇聚束 X 射线晶体学研究,从而达到这一境界。我们的研究表明,利用高数值孔径的多层劳厄透镜等色散光学器件,可以将时间编码到衍射图样中,并达到深亚飞秒精度。每个快照衍射图样都由布拉格条纹组成,这些条纹可以映射回 X 射线在晶体表面的到达时间和位置。其时间跨度可达数十飞秒,并可进行精细采样,实验证明了这一点。这种方法还具有其他一些优势,例如增加了快照衍射图样中可观察到的反射次数,所有这些都完全集成在一起,从而提高了序列晶体学的速度和准确性--尤其是对于小分子晶体而言。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信