Genome‐wide association mapping reveals novel genes and genomic regions controlling root‐lesion nematode resistance in chickpea mini core collection

Ashish Kumar, Yogesh Dashrath Naik, Vedant Gautam, Sunanda Patil, Vinod Valluri, Sonal Channale, Jayant Bhatt, Stuti Sharma, R. S. Ramakrishnan, Radheshyam Sharma, Himabindu Kudapa, Rebecca S. Zwart, Somashekhar M. Punnuri, Rajeev K. Varshney, Mahendar Thudi
{"title":"Genome‐wide association mapping reveals novel genes and genomic regions controlling root‐lesion nematode resistance in chickpea mini core collection","authors":"Ashish Kumar, Yogesh Dashrath Naik, Vedant Gautam, Sunanda Patil, Vinod Valluri, Sonal Channale, Jayant Bhatt, Stuti Sharma, R. S. Ramakrishnan, Radheshyam Sharma, Himabindu Kudapa, Rebecca S. Zwart, Somashekhar M. Punnuri, Rajeev K. Varshney, Mahendar Thudi","doi":"10.1002/tpg2.20508","DOIUrl":null,"url":null,"abstract":"Root‐lesion nematodes (RLN) pose a significant threat to chickpea (<jats:italic>Cicer arietinum</jats:italic> L.) by damaging the root system and causing up to 25% economic losses due to reduced yield. Worldwide commercially grown chickpea varieties lack significant genetic resistance to RLN, necessitating the identification of genetic variants contributing to natural resistance. This study identifies genomic loci responsible for resistance to the RLN, <jats:italic>Pratylenchus thornei</jats:italic> Sher &amp; Allen, in chickpea by utilizing high‐quality single nucleotide polymorphisms from whole‐genome sequencing data of 202 chickpea accessions. Phenotypic evaluations of the genetically diverse set of chickpea accessions in India and Australia revealed a wide range of responses from resistant to susceptible. Genome‐wide association studies (GWAS) employing Fixed and Random Model Circulating Probability Unification (FarmCPU) and Bayesian‐Information and Linkage‐Disequilibrium Iteratively Nested Keyway (BLINK) models identified 44 marker‐trait associations distributed across all chromosomes except Ca1. Crucially, genomic regions on Ca2 and Ca5 consistently display significant associations across locations. Of 25 candidate genes identified, five genes were putatively involved in RLN resistance response (glucose‐6‐phosphate dehydrogenase, heat shock proteins, MYB‐like DNA‐binding protein, zinc finger FYVE protein and pathogenesis‐related thaumatin‐like protein). One notably identified gene (<jats:italic>Ca_10016</jats:italic>) presents four haplotypes, where haplotypes 1–3 confer moderate susceptibility, and haplotype 4 contributes to high susceptibility to RLN. This information provides potential targets for marker development to enhance breeding for RLN resistance in chickpea. Additionally, five potential resistant genotypes (ICC3512, ICC8855, ICC5337, ICC8950, and ICC6537) to <jats:italic>P. thornei</jats:italic> were identified based on their performance at a specific location. The study's significance lies in its comprehensive approach, integrating multiple‐location phenotypic evaluations, advanced GWAS models, and functional genomics to unravel the genetic basis of <jats:italic>P. thornei</jats:italic> resistance. The identified genomic regions, candidate genes, and haplotypes offer valuable insights for breeding strategies, paving the way for developing chickpea varieties resilient to <jats:italic>P. thornei</jats:italic> attack.","PeriodicalId":501653,"journal":{"name":"The Plant Genome","volume":"62 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Plant Genome","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/tpg2.20508","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Root‐lesion nematodes (RLN) pose a significant threat to chickpea (Cicer arietinum L.) by damaging the root system and causing up to 25% economic losses due to reduced yield. Worldwide commercially grown chickpea varieties lack significant genetic resistance to RLN, necessitating the identification of genetic variants contributing to natural resistance. This study identifies genomic loci responsible for resistance to the RLN, Pratylenchus thornei Sher & Allen, in chickpea by utilizing high‐quality single nucleotide polymorphisms from whole‐genome sequencing data of 202 chickpea accessions. Phenotypic evaluations of the genetically diverse set of chickpea accessions in India and Australia revealed a wide range of responses from resistant to susceptible. Genome‐wide association studies (GWAS) employing Fixed and Random Model Circulating Probability Unification (FarmCPU) and Bayesian‐Information and Linkage‐Disequilibrium Iteratively Nested Keyway (BLINK) models identified 44 marker‐trait associations distributed across all chromosomes except Ca1. Crucially, genomic regions on Ca2 and Ca5 consistently display significant associations across locations. Of 25 candidate genes identified, five genes were putatively involved in RLN resistance response (glucose‐6‐phosphate dehydrogenase, heat shock proteins, MYB‐like DNA‐binding protein, zinc finger FYVE protein and pathogenesis‐related thaumatin‐like protein). One notably identified gene (Ca_10016) presents four haplotypes, where haplotypes 1–3 confer moderate susceptibility, and haplotype 4 contributes to high susceptibility to RLN. This information provides potential targets for marker development to enhance breeding for RLN resistance in chickpea. Additionally, five potential resistant genotypes (ICC3512, ICC8855, ICC5337, ICC8950, and ICC6537) to P. thornei were identified based on their performance at a specific location. The study's significance lies in its comprehensive approach, integrating multiple‐location phenotypic evaluations, advanced GWAS models, and functional genomics to unravel the genetic basis of P. thornei resistance. The identified genomic regions, candidate genes, and haplotypes offer valuable insights for breeding strategies, paving the way for developing chickpea varieties resilient to P. thornei attack.
全基因组关联图谱揭示了控制鹰嘴豆小型核心集根瘤线虫抗性的新基因和基因组区域
根线虫(RLN)对鹰嘴豆(Cicer arietinum L.)构成严重威胁,它会破坏根系,并因减产造成高达 25% 的经济损失。世界范围内商业种植的鹰嘴豆品种缺乏对 RLN 的显著遗传抗性,因此有必要鉴定天然抗性的遗传变异。本研究利用 202 个鹰嘴豆品种全基因组测序数据中的高质量单核苷酸多态性,确定了鹰嘴豆对 RLN(Pratylenchus thornei Sher & Allen)具有抗性的基因组位点。在印度和澳大利亚对不同基因的鹰嘴豆品种进行表型评估后发现,从抗性到易感性,鹰嘴豆的反应范围很广。全基因组关联研究(GWAS)采用了固定和随机模型循环概率统一(FarmCPU)以及贝叶斯信息和连锁-失衡迭代嵌套关键途径(BLINK)模型,确定了 44 个标记与性状的关联,分布在除 Ca1 以外的所有染色体上。最重要的是,Ca2 和 Ca5 上的基因组区域始终显示出不同位置的显著关联。在确定的 25 个候选基因中,有 5 个基因可能参与了 RLN 抗性反应(葡萄糖-6-磷酸脱氢酶、热休克蛋白、MYB 样 DNA 结合蛋白、锌指 FYVE 蛋白和致病相关的潮霉素样蛋白)。其中一个已发现的基因(Ca_10016)有四个单倍型,其中单倍型 1-3 具有中度易感性,而单倍型 4 则对 RLN 具有高度易感性。这些信息为标记开发提供了潜在目标,以提高鹰嘴豆抗 RLN 的育种能力。此外,根据其在特定地点的表现,确定了五种对 P. thornei 有潜在抗性的基因型(ICC3512、ICC8855、ICC5337、ICC8950 和 ICC6537)。这项研究的意义在于它采用了综合方法,整合了多地点表型评估、先进的 GWAS 模型和功能基因组学,以揭示荆条穗霉抗性的遗传基础。所确定的基因组区域、候选基因和单倍型为育种策略提供了宝贵的见解,为开发能抵抗 P. thornei 侵袭的鹰嘴豆品种铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信