Cubature-based uncertainty estimation for nonlinear regression models

Martin Bubel, Jochen Schmid, Maximilian Carmesin, Volodymyr Kozachynskyi, Erik Esche, Michael Bortz
{"title":"Cubature-based uncertainty estimation for nonlinear regression models","authors":"Martin Bubel, Jochen Schmid, Maximilian Carmesin, Volodymyr Kozachynskyi, Erik Esche, Michael Bortz","doi":"arxiv-2409.08756","DOIUrl":null,"url":null,"abstract":"Calibrating model parameters to measured data by minimizing loss functions is\nan important step in obtaining realistic predictions from model-based\napproaches, e.g., for process optimization. This is applicable to both\nknowledge-driven and data-driven model setups. Due to measurement errors, the\ncalibrated model parameters also carry uncertainty. In this contribution, we\nuse cubature formulas based on sparse grids to calculate the variance of the\nregression results. The number of cubature points is close to the theoretical\nminimum required for a given level of exactness. We present exact benchmark\nresults, which we also compare to other cubatures. This scheme is then applied\nto estimate the prediction uncertainty of the NRTL model, calibrated to\nobservations from different experimental designs.","PeriodicalId":501425,"journal":{"name":"arXiv - STAT - Methodology","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Methodology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08756","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Calibrating model parameters to measured data by minimizing loss functions is an important step in obtaining realistic predictions from model-based approaches, e.g., for process optimization. This is applicable to both knowledge-driven and data-driven model setups. Due to measurement errors, the calibrated model parameters also carry uncertainty. In this contribution, we use cubature formulas based on sparse grids to calculate the variance of the regression results. The number of cubature points is close to the theoretical minimum required for a given level of exactness. We present exact benchmark results, which we also compare to other cubatures. This scheme is then applied to estimate the prediction uncertainty of the NRTL model, calibrated to observations from different experimental designs.
基于三次方的非线性回归模型不确定性估计
通过最小化损失函数将模型参数与测量数据进行校准,是基于模型的方法(如流程优化)获得真实预测的重要一步。这同时适用于知识驱动型和数据驱动型模型设置。由于测量误差,校准后的模型参数也具有不确定性。在本文中,我们使用基于稀疏网格的立方公式来计算回归结果的方差。立方点的数量接近特定精确度所需的理论最小值。我们提出了精确的基准结果,并与其他立方公式进行了比较。然后,我们将这一方案应用于估算 NRTL 模型的预测不确定性,并根据来自不同实验设计的观测数据进行校准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信