Generalized Matrix Factor Model

Xinbing Kong, Tong Zhang
{"title":"Generalized Matrix Factor Model","authors":"Xinbing Kong, Tong Zhang","doi":"arxiv-2409.10001","DOIUrl":null,"url":null,"abstract":"This article introduces a nonlinear generalized matrix factor model (GMFM)\nthat allows for mixed-type variables, extending the scope of linear matrix\nfactor models (LMFM) that are so far limited to handling continuous variables.\nWe introduce a novel augmented Lagrange multiplier method, equivalent to the\nconstraint maximum likelihood estimation, and carefully tailored to be locally\nconcave around the true factor and loading parameters. This statistically\nguarantees the local convexity of the negative Hessian matrix around the true\nparameters of the factors and loadings, which is nontrivial in the matrix\nfactor modeling and leads to feasible central limit theorems of the estimated\nfactors and loadings. We also theoretically establish the convergence rates of\nthe estimated factor and loading matrices for the GMFM under general conditions\nthat allow for correlations across samples, rows, and columns. Moreover, we\nprovide a model selection criterion to determine the numbers of row and column\nfactors consistently. To numerically compute the constraint maximum likelihood\nestimator, we provide two algorithms: two-stage alternating maximization and\nminorization maximization. Extensive simulation studies demonstrate GMFM's\nsuperiority in handling discrete and mixed-type variables. An empirical data\nanalysis of the company's operating performance shows that GMFM does clustering\nand reconstruction well in the presence of discontinuous entries in the data\nmatrix.","PeriodicalId":501425,"journal":{"name":"arXiv - STAT - Methodology","volume":"29 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Methodology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This article introduces a nonlinear generalized matrix factor model (GMFM) that allows for mixed-type variables, extending the scope of linear matrix factor models (LMFM) that are so far limited to handling continuous variables. We introduce a novel augmented Lagrange multiplier method, equivalent to the constraint maximum likelihood estimation, and carefully tailored to be locally concave around the true factor and loading parameters. This statistically guarantees the local convexity of the negative Hessian matrix around the true parameters of the factors and loadings, which is nontrivial in the matrix factor modeling and leads to feasible central limit theorems of the estimated factors and loadings. We also theoretically establish the convergence rates of the estimated factor and loading matrices for the GMFM under general conditions that allow for correlations across samples, rows, and columns. Moreover, we provide a model selection criterion to determine the numbers of row and column factors consistently. To numerically compute the constraint maximum likelihood estimator, we provide two algorithms: two-stage alternating maximization and minorization maximization. Extensive simulation studies demonstrate GMFM's superiority in handling discrete and mixed-type variables. An empirical data analysis of the company's operating performance shows that GMFM does clustering and reconstruction well in the presence of discontinuous entries in the data matrix.
广义矩阵因子模型
本文介绍了一种允许混合型变量的非线性广义矩阵因子模型(GMFM),扩展了迄今为止仅限于处理连续变量的线性矩阵因子模型(LMFM)的范围。我们引入了一种新颖的增强拉格朗日乘数方法,该方法等同于约束最大似然估计,并经过精心定制,在真实因子和载荷参数周围具有局部凹性。这在统计学上保证了负黑森矩阵在因子和载荷真实参数周围的局部凸性,这在矩阵因子建模中并非难事,并导致了可行的因子和载荷估计中心极限定理。我们还从理论上确定了 GMFM 在允许跨样本、跨行和跨列相关性的一般条件下估计因子和载荷矩阵的收敛率。此外,我们还提供了一个模型选择标准,以一致地确定行和列因子的数量。为了对约束最大似然估计器进行数值计算,我们提供了两种算法:两阶段交替最大化算法和最小化最大化算法。广泛的模拟研究证明了 GMFM 在处理离散变量和混合型变量方面的优越性。对公司经营业绩的实证数据分析表明,在数据矩阵中存在不连续条目的情况下,GMFM 能很好地进行聚类和重构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信