E-Values for Exponential Families: the General Case

Yunda Hao, Peter Grünwald
{"title":"E-Values for Exponential Families: the General Case","authors":"Yunda Hao, Peter Grünwald","doi":"arxiv-2409.11134","DOIUrl":null,"url":null,"abstract":"We analyze common types of e-variables and e-processes for composite\nexponential family nulls: the optimal e-variable based on the reverse\ninformation projection (RIPr), the conditional (COND) e-variable, and the\nuniversal inference (UI) and sequen\\-tialized RIPr e-processes. We characterize\nthe RIPr prior for simple and Bayes-mixture based alternatives, either\nprecisely (for Gaussian nulls and alternatives) or in an approximate sense\n(general exponential families). We provide conditions under which the RIPr\ne-variable is (again exactly vs. approximately) equal to the COND e-variable.\nBased on these and other interrelations which we establish, we determine the\ne-power of the four e-statistics as a function of sample size, exactly for\nGaussian and up to $o(1)$ in general. For $d$-dimensional null and alternative,\nthe e-power of UI tends to be smaller by a term of $(d/2) \\log n + O(1)$ than\nthat of the COND e-variable, which is the clear winner.","PeriodicalId":501425,"journal":{"name":"arXiv - STAT - Methodology","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Methodology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We analyze common types of e-variables and e-processes for composite exponential family nulls: the optimal e-variable based on the reverse information projection (RIPr), the conditional (COND) e-variable, and the universal inference (UI) and sequen\-tialized RIPr e-processes. We characterize the RIPr prior for simple and Bayes-mixture based alternatives, either precisely (for Gaussian nulls and alternatives) or in an approximate sense (general exponential families). We provide conditions under which the RIPr e-variable is (again exactly vs. approximately) equal to the COND e-variable. Based on these and other interrelations which we establish, we determine the e-power of the four e-statistics as a function of sample size, exactly for Gaussian and up to $o(1)$ in general. For $d$-dimensional null and alternative, the e-power of UI tends to be smaller by a term of $(d/2) \log n + O(1)$ than that of the COND e-variable, which is the clear winner.
指数族的 E 值:一般情况
我们分析了复合指数族空值的常见电子变量和电子过程类型:基于反向信息投影(RIPr)的最优电子变量、条件(COND)电子变量、通用推理(UI)和序列化 RIPr 电子过程。我们描述了基于简单和贝叶斯混合物的 RIPr 先验的特征,无论是精确的(高斯空值和替代变量)还是近似意义上的(一般指数族)。我们提供了 RIPre 变量与 COND e 变量(同样是精确与近似)相等的条件。基于我们建立的这些及其他相互关系,我们确定了四个 e 统计量与样本量的函数关系,精确用于高斯,一般可达 $o(1)$。对于 $d$ 维的 null 和 alternative,UI 的 e-power 往往比 COND e-variable 的 e-power 小 $(d/2) \log n + O(1)$,后者是明显的赢家。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信