Translation elongation inhibitors stabilize select short-lived transcripts

IF 4.2 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
RNA Pub Date : 2024-09-18 DOI:10.1261/rna.080138.124
Nicolle A. Rosa-Mercado, Allen R. Buskirk, Rachel Green
{"title":"Translation elongation inhibitors stabilize select short-lived transcripts","authors":"Nicolle A. Rosa-Mercado, Allen R. Buskirk, Rachel Green","doi":"10.1261/rna.080138.124","DOIUrl":null,"url":null,"abstract":"Translation elongation inhibitors are commonly used to study different cellular processes. Yet, their specific impact on transcription and mRNA decay has not been thoroughly assessed. Here we use TimeLapse sequencing to investigate how translational stress impacts mRNA dynamics in human cells. Our results reveal that a distinct group of transcripts is stabilized in response to the translation elongation inhibitor emetine. These stabilized mRNAs are short-lived at steady state and many of them encode C2H2 zinc finger proteins. The codon usage of these stabilized transcripts is suboptimal compared to other expressed transcripts, including other short-lived mRNAs that are not stabilized after emetine treatment. Finally, we show that stabilization of these transcripts is independent of ribosome quality control factors and signaling pathways activated by ribosome collisions. Our data describe a group of short-lived transcripts whose degradation is particularly sensitive to the inhibition of translation elongation.","PeriodicalId":21401,"journal":{"name":"RNA","volume":"52 1","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RNA","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1261/rna.080138.124","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Translation elongation inhibitors are commonly used to study different cellular processes. Yet, their specific impact on transcription and mRNA decay has not been thoroughly assessed. Here we use TimeLapse sequencing to investigate how translational stress impacts mRNA dynamics in human cells. Our results reveal that a distinct group of transcripts is stabilized in response to the translation elongation inhibitor emetine. These stabilized mRNAs are short-lived at steady state and many of them encode C2H2 zinc finger proteins. The codon usage of these stabilized transcripts is suboptimal compared to other expressed transcripts, including other short-lived mRNAs that are not stabilized after emetine treatment. Finally, we show that stabilization of these transcripts is independent of ribosome quality control factors and signaling pathways activated by ribosome collisions. Our data describe a group of short-lived transcripts whose degradation is particularly sensitive to the inhibition of translation elongation.
翻译延伸抑制剂可稳定某些短寿命转录本
翻译延伸抑制剂常用于研究不同的细胞过程。然而,它们对转录和 mRNA 衰减的具体影响尚未得到全面评估。在这里,我们利用延时测序技术研究了翻译压力如何影响人体细胞中的 mRNA 动态。我们的研究结果表明,在翻译伸长抑制剂依美汀的作用下,一组不同的转录本会趋于稳定。这些稳定的 mRNA 在稳定状态下寿命很短,其中许多编码 C2H2 锌指蛋白。与其他表达的转录本相比,这些稳定的转录本的密码子使用情况并不理想,包括其他经依美汀处理后并不稳定的短寿命 mRNA。最后,我们发现这些转录本的稳定与核糖体质量控制因子和核糖体碰撞激活的信号通路无关。我们的数据描述了一组短寿命转录本,它们的降解对翻译延伸的抑制特别敏感。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
RNA
RNA 生物-生化与分子生物学
CiteScore
8.30
自引率
2.20%
发文量
101
审稿时长
2.6 months
期刊介绍: RNA is a monthly journal which provides rapid publication of significant original research in all areas of RNA structure and function in eukaryotic, prokaryotic, and viral systems. It covers a broad range of subjects in RNA research, including: structural analysis by biochemical or biophysical means; mRNA structure, function and biogenesis; alternative processing: cis-acting elements and trans-acting factors; ribosome structure and function; translational control; RNA catalysis; tRNA structure, function, biogenesis and identity; RNA editing; rRNA structure, function and biogenesis; RNA transport and localization; regulatory RNAs; large and small RNP structure, function and biogenesis; viral RNA metabolism; RNA stability and turnover; in vitro evolution; and RNA chemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信