Biomimetic Virus-Like Particles to control cell functions

Hasna Maayouf, Thomas Dos Santos, Alphonse Boche, Rayane Hedna, Kaspars Tars, Isabelle Brigaud, Tatiana Petithory, Franck Carreiras, Carole Arnold, Ambroise Lambert, Laurent Pieuchot
{"title":"Biomimetic Virus-Like Particles to control cell functions","authors":"Hasna Maayouf, Thomas Dos Santos, Alphonse Boche, Rayane Hedna, Kaspars Tars, Isabelle Brigaud, Tatiana Petithory, Franck Carreiras, Carole Arnold, Ambroise Lambert, Laurent Pieuchot","doi":"10.1101/2024.09.14.612851","DOIUrl":null,"url":null,"abstract":"Biomimetic cues from the extracellular matrix (ECM) are essential for optimizing cell microenvironments and biomaterials. While native ECM proteins or synthetic peptides offer potential solutions, challenges such as production cost, solubility, and conformational stability limit their use. Here, we present the development of virus-like particles (VLPs) derived from the AP205 RNA phage displaying peptides from key ECM proteins and evaluate their biological activity in a variety of assays. We show that our engineered VLPs can effectively stimulate cell adhesion, migration, proliferation and differentiation. By comparing focal adhesions formed by RGD VLPs with their parent protein, fibronectin, we elucidate both similarities and differences in cell interactions. In addition, we construct heterodimeric particles co-expressing RGD with differentiation peptides and demonstrate retention of bioactivity in a multi-peptide context. This study establishes AP205 VLPs as versatile nanoscale platforms capable of tuning cell functions, with promising applications in nanomedicine and biomaterials.","PeriodicalId":501308,"journal":{"name":"bioRxiv - Bioengineering","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Bioengineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.14.612851","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Biomimetic cues from the extracellular matrix (ECM) are essential for optimizing cell microenvironments and biomaterials. While native ECM proteins or synthetic peptides offer potential solutions, challenges such as production cost, solubility, and conformational stability limit their use. Here, we present the development of virus-like particles (VLPs) derived from the AP205 RNA phage displaying peptides from key ECM proteins and evaluate their biological activity in a variety of assays. We show that our engineered VLPs can effectively stimulate cell adhesion, migration, proliferation and differentiation. By comparing focal adhesions formed by RGD VLPs with their parent protein, fibronectin, we elucidate both similarities and differences in cell interactions. In addition, we construct heterodimeric particles co-expressing RGD with differentiation peptides and demonstrate retention of bioactivity in a multi-peptide context. This study establishes AP205 VLPs as versatile nanoscale platforms capable of tuning cell functions, with promising applications in nanomedicine and biomaterials.
控制细胞功能的仿生病毒颗粒
来自细胞外基质(ECM)的生物模拟线索对于优化细胞微环境和生物材料至关重要。虽然原生 ECM 蛋白或合成肽提供了潜在的解决方案,但生产成本、溶解性和构象稳定性等挑战限制了它们的使用。在这里,我们介绍了从 AP205 RNA 噬菌体中提取的病毒样颗粒(VLPs)的开发情况,这种颗粒显示了来自关键 ECM 蛋白的肽,并在各种试验中评估了它们的生物活性。我们的研究表明,我们设计的 VLPs 能有效刺激细胞粘附、迁移、增殖和分化。通过比较 RGD VLP 与其母体蛋白纤维粘连蛋白形成的病灶粘连,我们阐明了细胞相互作用的异同。此外,我们还构建了共表达 RGD 与分化肽的异二聚体颗粒,并证明了在多肽背景下生物活性的保留。这项研究将 AP205 VLPs 确立为能够调整细胞功能的多功能纳米级平台,在纳米医学和生物材料领域具有广阔的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信