{"title":"Systematic investigation of the nuclear multipole deformations in U+U collisions with a multi-phase transport model","authors":"Zaining Wang, Jinhui Chen, Hao-jie Xu, Jie Zhao","doi":"10.1103/physrevc.110.034907","DOIUrl":null,"url":null,"abstract":"Relativistic heavy ion collisions provide a unique opportunity to study the shape of colliding nuclei, even up to higher-order multipole deformations. In this work, several observables that are sensitive to quadrupole and hexadecapole deformations of uranium-238 in relativistic <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mtext>U</mtext><mo>+</mo><mtext>U</mtext></math> collisions have been systematically investigated with a multi-phase transport model. We find that the flow harmonic <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>v</mi><mn>2</mn></msub></math>, the <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>v</mi><mn>2</mn></msub></math> and mean transverse momentum correlation, and the three-particle asymmetry cumulant <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mi>ac</mi><mn>2</mn></msub><mrow><mo>{</mo><mn>3</mn><mo>}</mo></mrow></mrow></math> are sensitive to nuclear quadrupole deformation, while <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mi>ac</mi><mn>2</mn></msub><mrow><mo>{</mo><mn>3</mn><mo>}</mo></mrow></mrow></math> and nonlinear response coefficient <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>χ</mi><mrow><mn>4</mn><mo>,</mo><mn>22</mn></mrow></msub></math> are sensitive to nuclear hexadecapole deformation. Our results from transport model studies are in qualitative agreement with previous hydrodynamic studies. The results indicate that the uncertainties of the hexadecapole deformation of uranium on the quadrupole deformation determination can be reduced by the abundance of correlation observables provided by the relativistic heavy ion collisions.","PeriodicalId":20122,"journal":{"name":"Physical Review C","volume":"24 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review C","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevc.110.034907","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
Relativistic heavy ion collisions provide a unique opportunity to study the shape of colliding nuclei, even up to higher-order multipole deformations. In this work, several observables that are sensitive to quadrupole and hexadecapole deformations of uranium-238 in relativistic collisions have been systematically investigated with a multi-phase transport model. We find that the flow harmonic , the and mean transverse momentum correlation, and the three-particle asymmetry cumulant are sensitive to nuclear quadrupole deformation, while and nonlinear response coefficient are sensitive to nuclear hexadecapole deformation. Our results from transport model studies are in qualitative agreement with previous hydrodynamic studies. The results indicate that the uncertainties of the hexadecapole deformation of uranium on the quadrupole deformation determination can be reduced by the abundance of correlation observables provided by the relativistic heavy ion collisions.
期刊介绍:
Physical Review C (PRC) is a leading journal in theoretical and experimental nuclear physics, publishing more than two-thirds of the research literature in the field.
PRC covers experimental and theoretical results in all aspects of nuclear physics, including:
Nucleon-nucleon interaction, few-body systems
Nuclear structure
Nuclear reactions
Relativistic nuclear collisions
Hadronic physics and QCD
Electroweak interaction, symmetries
Nuclear astrophysics