Extraction of the microscopic properties of quasiparticles using deep neural networks

IF 3.1 2区 物理与天体物理 Q1 Physics and Astronomy
Olga Soloveva, Andrea Palermo, Elena Bratkovskaya
{"title":"Extraction of the microscopic properties of quasiparticles using deep neural networks","authors":"Olga Soloveva, Andrea Palermo, Elena Bratkovskaya","doi":"10.1103/physrevc.110.034908","DOIUrl":null,"url":null,"abstract":"We use deep neural networks (DNNs) to obtain the properties of partons in terms of an off-shell quasiparticle description. We aim to infer masses and widths of quasigluons, up/down, and strange (anti)quarks using constraints on the macroscopic thermodynamic observables obtained by the first-principles lattice QCD (lQCD) calculations. In this study we use three independent dimensionless thermodynamic observables from lQCD for minimization as the ratio of entropy density to temperature <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>s</mi><mo>/</mo><msup><mi>T</mi><mn>3</mn></msup></mrow></math>, baryon susceptibility <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msubsup><mi>χ</mi><mn>2</mn><mi>B</mi></msubsup></math>, and strangeness susceptibility <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msubsup><mi>χ</mi><mn>2</mn><mi>S</mi></msubsup></math>. First, we train our DNN using the DQPM (dynamical quasiparticle model) ansatz for the masses and widths. Furthermore, we use the DNN capabilities to generalize this ansatz, to evaluate which quasiparticle masses and widths are desirable to describe different thermodynamic functions simultaneously. To evaluate consistently the microscopic properties obtained by the DNN in the case of off-shell quarks and gluons, we compute transport coefficients using the spectral function within the Kubo-Zubarev formalism in different setups. In particular, we make a comprehensive comparison in the case of the dimensionless ratios of shear viscosity over entropy density <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>η</mi><mo>/</mo><mi>s</mi></mrow></math>, and electric conductivity over temperature <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mi>σ</mi><mi>Q</mi></msub><mo>/</mo><mi>T</mi></mrow></math>, which provide additional constraints for the parameter generalization of the considered model cases. We present the parameter settings found by the DNN which can improve the quasiparticle description of lQCD data on the susceptibility and electric conductivity of strange quarks.","PeriodicalId":20122,"journal":{"name":"Physical Review C","volume":"12 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review C","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevc.110.034908","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

We use deep neural networks (DNNs) to obtain the properties of partons in terms of an off-shell quasiparticle description. We aim to infer masses and widths of quasigluons, up/down, and strange (anti)quarks using constraints on the macroscopic thermodynamic observables obtained by the first-principles lattice QCD (lQCD) calculations. In this study we use three independent dimensionless thermodynamic observables from lQCD for minimization as the ratio of entropy density to temperature s/T3, baryon susceptibility χ2B, and strangeness susceptibility χ2S. First, we train our DNN using the DQPM (dynamical quasiparticle model) ansatz for the masses and widths. Furthermore, we use the DNN capabilities to generalize this ansatz, to evaluate which quasiparticle masses and widths are desirable to describe different thermodynamic functions simultaneously. To evaluate consistently the microscopic properties obtained by the DNN in the case of off-shell quarks and gluons, we compute transport coefficients using the spectral function within the Kubo-Zubarev formalism in different setups. In particular, we make a comprehensive comparison in the case of the dimensionless ratios of shear viscosity over entropy density η/s, and electric conductivity over temperature σQ/T, which provide additional constraints for the parameter generalization of the considered model cases. We present the parameter settings found by the DNN which can improve the quasiparticle description of lQCD data on the susceptibility and electric conductivity of strange quarks.

Abstract Image

利用深度神经网络提取准粒子的微观特性
我们使用深度神经网络(DNN)来获取壳外准粒子描述中的粒子特性。我们的目的是利用第一原理晶格 QCD(lQCD)计算所获得的宏观热力学观测值的约束条件来推断准流子、上/下夸克和奇异(反)夸克的质量和宽度。在本研究中,我们使用 lQCD 中的三个独立的无量纲热力学观测值进行最小化,它们是熵密度与温度之比 s/T3、重子感度 χ2B 和奇异感度 χ2S。首先,我们使用 DQPM(动态准粒子模型)公式训练 DNN 的质量和宽度。此外,我们还利用 DNN 的功能来推广这一公式,以评估哪些准粒子质量和宽度适合同时描述不同的热力学函数。为了一致地评估 DNN 在壳外夸克和胶子情况下获得的微观特性,我们在库勃-祖巴列夫形式主义中使用谱函数计算了不同设置下的传输系数。特别是,我们对剪切粘度与熵密度η/s、电导率与温度σQ/T的无量纲比率进行了综合比较,这为所考虑的模型情况的参数泛化提供了额外的约束。我们介绍了 DNN 发现的参数设置,这些参数设置可以改进关于奇异夸克的感性和电导率的 lQCD 数据的类粒子描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Review C
Physical Review C 物理-物理:核物理
CiteScore
5.70
自引率
35.50%
发文量
0
审稿时长
1-2 weeks
期刊介绍: Physical Review C (PRC) is a leading journal in theoretical and experimental nuclear physics, publishing more than two-thirds of the research literature in the field. PRC covers experimental and theoretical results in all aspects of nuclear physics, including: Nucleon-nucleon interaction, few-body systems Nuclear structure Nuclear reactions Relativistic nuclear collisions Hadronic physics and QCD Electroweak interaction, symmetries Nuclear astrophysics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信