The GHSR1a antagonist LEAP2 regulates islet hormone release in a sex-specific manner

IF 3.4 3区 医学 Q2 ENDOCRINOLOGY & METABOLISM
Nirun Hewawasam, Debalina Sakar, Olivia Bolton, Blerinda Delishaj, Maha Almutairi, Aileen King, Ayse S Dereli, Chloe Despontin, Patrick Gilon, Sue Reeves, Michael Patterson, Astrid Christine Hauge-Evans
{"title":"The GHSR1a antagonist LEAP2 regulates islet hormone release in a sex-specific manner","authors":"Nirun Hewawasam, Debalina Sakar, Olivia Bolton, Blerinda Delishaj, Maha Almutairi, Aileen King, Ayse S Dereli, Chloe Despontin, Patrick Gilon, Sue Reeves, Michael Patterson, Astrid Christine Hauge-Evans","doi":"10.1530/joe-24-0135","DOIUrl":null,"url":null,"abstract":"<p>LEAP2, a liver-derived antagonist for the ghrelin receptor, GHSR1a, counteracts effects of ghrelin on appetite and energy balance. Less is known about its impact on blood glucose-regulating hormones from pancreatic islets. Here we investigate whether acyl-ghrelin (AG) and LEAP2 regulate islet hormone release in a cell type- and sex-specific manner. Hormone content from secretion experiments with isolated islets from male and female mice was measured by radioimmunoassay and mRNA expression by qPCR. LEAP2 enhanced insulin secretion in islets from males (p&lt;0.01) but not females (p&lt;0.2), whilst AG-stimulated somatostatin release was significantly reversed by LEAP2 in males (p&lt;0.001) but not females (p&lt;0.2). Glucagon release was not significantly affected by AG and LEAP2. <i>Ghsr1a</i>,<i> Ghrelin</i>, <i>Leap2</i>, <i>Mrap2</i>, <i>Mboat4</i> and <i>Sstr3</i> islet mRNA expression did not differ between sexes. In control male islets maintained without 17-beta oestradiol (E2), AG exerted an insulinostatic effect (p&lt;0.05), with a trend towards reversal by LEAP2 (p=0.06). Both were abolished by 72h E2 pre-treatment (10 nmol/l, p&lt;0.2). AG-stimulated somatostatin release was inhibited by LEAP2 from control (p&lt;0.001) but not E2-treated islets (p&lt;0.2). LEAP2 and AG did not modulate insulin secretion from MIN6 beta cells and <i>Mrap2</i> was downregulated (P&lt;0.05) and <i>Ghsr1a</i> upregulated (P&lt;0.0001) in islets from <i>Sst<sup>-/-</sup>\n</i> mice. Our findings show that AG and LEAP2 regulate insulin and somatostatin release in an opposing and sex-dependent manner, which in males can be modulated by E2. We suggest that regulation of SST release is a key starting point for understanding the role of GHSR1a in islet function and glucose metabolism.</p>","PeriodicalId":15740,"journal":{"name":"Journal of Endocrinology","volume":"31 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Endocrinology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1530/joe-24-0135","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

LEAP2, a liver-derived antagonist for the ghrelin receptor, GHSR1a, counteracts effects of ghrelin on appetite and energy balance. Less is known about its impact on blood glucose-regulating hormones from pancreatic islets. Here we investigate whether acyl-ghrelin (AG) and LEAP2 regulate islet hormone release in a cell type- and sex-specific manner. Hormone content from secretion experiments with isolated islets from male and female mice was measured by radioimmunoassay and mRNA expression by qPCR. LEAP2 enhanced insulin secretion in islets from males (p<0.01) but not females (p<0.2), whilst AG-stimulated somatostatin release was significantly reversed by LEAP2 in males (p<0.001) but not females (p<0.2). Glucagon release was not significantly affected by AG and LEAP2. Ghsr1a, Ghrelin, Leap2, Mrap2, Mboat4 and Sstr3 islet mRNA expression did not differ between sexes. In control male islets maintained without 17-beta oestradiol (E2), AG exerted an insulinostatic effect (p<0.05), with a trend towards reversal by LEAP2 (p=0.06). Both were abolished by 72h E2 pre-treatment (10 nmol/l, p<0.2). AG-stimulated somatostatin release was inhibited by LEAP2 from control (p<0.001) but not E2-treated islets (p<0.2). LEAP2 and AG did not modulate insulin secretion from MIN6 beta cells and Mrap2 was downregulated (P<0.05) and Ghsr1a upregulated (P<0.0001) in islets from Sst-/- mice. Our findings show that AG and LEAP2 regulate insulin and somatostatin release in an opposing and sex-dependent manner, which in males can be modulated by E2. We suggest that regulation of SST release is a key starting point for understanding the role of GHSR1a in islet function and glucose metabolism.

GHSR1a 拮抗剂 LEAP2 以性别特异性方式调节胰岛激素的释放
LEAP2 是一种源自肝脏的胃泌素受体 GHSR1a 拮抗剂,可抵消胃泌素对食欲和能量平衡的影响。但人们对其对胰岛血糖调节激素的影响知之甚少。在此,我们研究了酰基胃泌素(AG)和 LEAP2 是否以细胞类型和性别特异性的方式调节胰岛激素的释放。我们用放射免疫分析法测量了雌雄小鼠离体胰岛分泌实验中的激素含量,并用 qPCR 法测量了 mRNA 的表达。LEAP2 能增强雄性小鼠胰岛的胰岛素分泌(p<0.01),但不能增强雌性小鼠胰岛的胰岛素分泌(p<0.2),而 LEAP2 能显著逆转 AG 刺激雄性小鼠释放的体生长抑素(p<0.001),但不能逆转雌性小鼠释放的体生长抑素(p<0.2)。胰高血糖素的释放不受 AG 和 LEAP2 的明显影响。Ghsr1a、Ghrelin、Leap2、Mrap2、Mboat4 和 Sstr3 的胰岛 mRNA 表达在性别间没有差异。在不使用 17-beta oestradiol(E2)的对照雄性胰岛中,AG 发挥了胰岛素抑制作用(p<0.05),LEAP2 有逆转的趋势(p=0.06)。预处理 72 小时的 E2(10 毫摩尔/升,p<0.2)可消除这两种效应。对照组(p<0.001)而非 E2 处理的胰岛(p<0.2)中,LEAP2 可抑制 AG 刺激的体生长抑素释放(p<0.001)。LEAP2 和 AG 不会调节 MIN6 β 细胞的胰岛素分泌,而在 Sst-/- 小鼠的胰岛中,Mrap2 下调(P<0.05),Ghsr1a 上调(P<0.0001)。我们的研究结果表明,AG 和 LEAP2 以对立和性别依赖的方式调节胰岛素和体泌素的释放,在雄性小鼠中,这种方式可受 E2 的调节。我们认为,调节 SST 释放是了解 GHSR1a 在胰岛功能和葡萄糖代谢中作用的一个关键起点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Endocrinology
Journal of Endocrinology 医学-内分泌学与代谢
CiteScore
7.90
自引率
2.50%
发文量
113
审稿时长
4-8 weeks
期刊介绍: Journal of Endocrinology is a leading global journal that publishes original research articles, reviews and science guidelines. Its focus is on endocrine physiology and metabolism, including hormone secretion; hormone action; biological effects. The journal publishes basic and translational studies at the organ, tissue and whole organism level.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信