Anisogrid lattice structure in thermoplastic composite by filament gun deposition

IF 1.8 4区 工程技术 Q3 ENGINEERING, MECHANICAL
Fabrizio Quadrini, Daniele Santoro, Loredana Santo
{"title":"Anisogrid lattice structure in thermoplastic composite by filament gun deposition","authors":"Fabrizio Quadrini, Daniele Santoro, Loredana Santo","doi":"10.1177/09544062241279014","DOIUrl":null,"url":null,"abstract":"A new method to manufacture thermoplastic composite parts has been used to produce anisogrid lattice structures. Filament gun deposition consists of a hot-melt gun loaded with narrow thermoplastic prepreg tapes. Anisogrid lattice structures have been prototyped with 3 different geometries and 5 different numbers of layers (from 4 to 8) by using a metallic pattern and E-glass/polypropylene prepregs. Scanning calorimetry and bending tests of multi-layer samples have been used to characterize thermoplastic prepregs. Anisogrid lattice structures have been tested under tensile loads. A finite element model has been used to predict mechanical stiffness of these structures by using material properties coming from the sample characterization. Numerical models have been developed with a batch-type parametric approach to rapidly evaluate the combined effect of geometric and material parameters. A good agreement has been found between experimental and numerical data with an average difference about 4%.","PeriodicalId":20558,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science","volume":"117 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544062241279014","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

A new method to manufacture thermoplastic composite parts has been used to produce anisogrid lattice structures. Filament gun deposition consists of a hot-melt gun loaded with narrow thermoplastic prepreg tapes. Anisogrid lattice structures have been prototyped with 3 different geometries and 5 different numbers of layers (from 4 to 8) by using a metallic pattern and E-glass/polypropylene prepregs. Scanning calorimetry and bending tests of multi-layer samples have been used to characterize thermoplastic prepregs. Anisogrid lattice structures have been tested under tensile loads. A finite element model has been used to predict mechanical stiffness of these structures by using material properties coming from the sample characterization. Numerical models have been developed with a batch-type parametric approach to rapidly evaluate the combined effect of geometric and material parameters. A good agreement has been found between experimental and numerical data with an average difference about 4%.
通过丝枪沉积在热塑性复合材料中形成茴香网格结构
一种制造热塑性复合材料部件的新方法已被用于生产异方格网状结构。纤丝枪沉积法由装载窄热塑性预浸带的热熔枪组成。通过使用金属图案和 E 玻璃/聚丙烯预浸料,已制作出 3 种不同几何形状和 5 种不同层数(从 4 层到 8 层)的异方格网格结构原型。多层样品的扫描量热仪和弯曲试验被用来表征热塑性预浸料。在拉伸载荷下测试了茴香网格结构。有限元模型利用样品表征得出的材料特性来预测这些结构的机械刚度。采用批量式参数方法开发的数值模型可快速评估几何参数和材料参数的综合影响。实验数据和数值数据之间的一致性很好,平均差异约为 4%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.80
自引率
10.00%
发文量
625
审稿时长
4.3 months
期刊介绍: The Journal of Mechanical Engineering Science advances the understanding of both the fundamentals of engineering science and its application to the solution of challenges and problems in engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信