The Extreme Points of Fusions

Andreas Kleiner, Benny Moldovanu, Philipp Strack, Mark Whitmeyer
{"title":"The Extreme Points of Fusions","authors":"Andreas Kleiner, Benny Moldovanu, Philipp Strack, Mark Whitmeyer","doi":"arxiv-2409.10779","DOIUrl":null,"url":null,"abstract":"Our work explores fusions, the multidimensional counterparts of\nmean-preserving contractions and their extreme and exposed points. We reveal an\nelegant geometric/combinatorial structure for these objects. Of particular note\nis the connection between Lipschitz-exposed points (measures that are unique\noptimizers of Lipschitz-continuous objectives) and power diagrams, which are\ndivisions of a space into convex polyhedral ``cells'' according to a weighted\nproximity criterion. These objects are frequently seen in nature--in cell\nstructures in biological systems, crystal and plant growth patterns, and\nterritorial division in animal habitats--and, as we show, provide the essential\nstructure of Lipschitz-exposed fusions. We apply our results to several\nquestions concerning categorization.","PeriodicalId":501188,"journal":{"name":"arXiv - ECON - Theoretical Economics","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - ECON - Theoretical Economics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10779","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Our work explores fusions, the multidimensional counterparts of mean-preserving contractions and their extreme and exposed points. We reveal an elegant geometric/combinatorial structure for these objects. Of particular note is the connection between Lipschitz-exposed points (measures that are unique optimizers of Lipschitz-continuous objectives) and power diagrams, which are divisions of a space into convex polyhedral ``cells'' according to a weighted proximity criterion. These objects are frequently seen in nature--in cell structures in biological systems, crystal and plant growth patterns, and territorial division in animal habitats--and, as we show, provide the essential structure of Lipschitz-exposed fusions. We apply our results to several questions concerning categorization.
融合的极致点
我们的研究探索了融合、均值保留收缩的多维对应物及其极值和暴露点。我们揭示了这些对象的优雅几何/组合结构。尤其值得注意的是利普切茨暴露点(利普切茨连续目标的唯一优化量)与幂图之间的联系,幂图是根据加权临近准则将空间划分为凸多面体 "单元"。这些对象在自然界中经常出现--如生物系统中的细胞结构、晶体和植物的生长模式以及动物栖息地的领土划分--正如我们所展示的,它们提供了李普齐兹暴露融合的基本结构。我们将我们的结果应用于几个有关分类的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信