Coarse entropy of metric spaces

Pub Date : 2024-09-16 DOI:10.1007/s10711-024-00925-z
William Geller, Michał Misiurewicz, Damian Sawicki
{"title":"Coarse entropy of metric spaces","authors":"William Geller, Michał Misiurewicz, Damian Sawicki","doi":"10.1007/s10711-024-00925-z","DOIUrl":null,"url":null,"abstract":"<p>Coarse geometry studies metric spaces on the large scale. The recently introduced notion of coarse entropy is a tool to study dynamics from the coarse point of view. We prove that all isometries of a given metric space have the same coarse entropy and that this value is a coarse invariant. We call this value the coarse entropy of the space and investigate its connections with other properties of the space. We prove that it can only be either zero or infinity, and although for many spaces this dichotomy coincides with the subexponential–exponential growth dichotomy, there is no relation between coarse entropy and volume growth more generally. We completely characterise this dichotomy for spaces with bounded geometry and for quasi-geodesic spaces. As an application, we provide an example where coarse entropy yields an obstruction for a coarse embedding, where such an embedding is not precluded by considerations of volume growth.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10711-024-00925-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Coarse geometry studies metric spaces on the large scale. The recently introduced notion of coarse entropy is a tool to study dynamics from the coarse point of view. We prove that all isometries of a given metric space have the same coarse entropy and that this value is a coarse invariant. We call this value the coarse entropy of the space and investigate its connections with other properties of the space. We prove that it can only be either zero or infinity, and although for many spaces this dichotomy coincides with the subexponential–exponential growth dichotomy, there is no relation between coarse entropy and volume growth more generally. We completely characterise this dichotomy for spaces with bounded geometry and for quasi-geodesic spaces. As an application, we provide an example where coarse entropy yields an obstruction for a coarse embedding, where such an embedding is not precluded by considerations of volume growth.

分享
查看原文
度量空间的粗熵
粗几何学研究大尺度的度量空间。最近引入的粗糙熵概念是从粗糙角度研究动力学的工具。我们证明,给定度量空间的所有等距都具有相同的粗熵,而且这个值是一个粗不变式。我们称这个值为空间的粗熵,并研究它与空间其他性质的联系。我们证明,它只能是零或无穷大,尽管对许多空间来说,这种二分法与亚指数-指数增长二分法重合,但一般来说,粗熵与体积增长之间没有关系。我们完全描述了有界几何空间和准大地空间的这种二分法。作为应用,我们举例说明了粗熵对粗嵌入的阻碍,而这种嵌入并不因体积增长而被排除。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信