{"title":"Estimation of the elastic modulus of basaltic rocks using machine learning methods","authors":"Nurgul Yesiloglu-Gultekin, Ayhan Dogan","doi":"10.1007/s12145-024-01472-7","DOIUrl":null,"url":null,"abstract":"<p>The elastic modulus of basalt is a significant engineering parameter required for many projects. Therefore, a total of 137 datasets of basalts from Digor-Kilittasi, Turkey, were used to predict the elastic modulus of intact rock (E<sub>i</sub>) for this study. P wave velocity, S wave velocity, apparent porosity, and dry density parameters were employed as input parameters. In order to predict E<sub>i</sub>, seven different models with two or three inputs were constructed, employing four different machine learning methods such as Support Vector Machine (SVM), Gaussian Process Regression (GPR), Ensembles of Tree (ET), and Regression Trees (RT). The performance of datasets, models, and methods was evaluated using the coefficient of determination (R<sup>2</sup>), Root Mean Squared Error (RMSE), Mean Squared Error (MSE), and Mean Absolute Error (MAE). This study presented and analyzed the performance of four machine learning methods. A ranking approach was employed to determine the best performing method and dataset. Based on these evaluations, all four machine learning techniques effectively estimate the value of E<sub>i</sub>. While they can be used as an appropriate choice for estimating the elastic modulus of basaltic rocks, the ET approach appears to be the most successful method. However, the performance of the GPR is the worst according to model assessments. The average R² values for Model 1 through 7 of the ET method for the five test datasets are 0.97, 0.93, 0.89, 0.97, 0.91, 0.99, and 0.99, respectively. The the average R<sup>2</sup> values for GPR from Models 1 to 7 for the five test datasets are 0.73, 0.55, 0.69, 0.48, 0.47, 0.73, 0.56, respectively. An additional indication that the ET performed better than all the other methods was the Taylor diagram, which made it simple to determine how well the model predictions matched the observations. Furthermore, these findings validate the performance of the machine learning techniques employed in this study as valuable instruments for future investigations into the modeling of complex engineering issues. The results of this study suggest that machine learning algorithms can help reduce the need for high-quality core samples and labor-intensive procedures in predicting the elastic modulus of basaltic rocks, resulting in time and cost savings.</p>","PeriodicalId":49318,"journal":{"name":"Earth Science Informatics","volume":"27 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth Science Informatics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s12145-024-01472-7","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
The elastic modulus of basalt is a significant engineering parameter required for many projects. Therefore, a total of 137 datasets of basalts from Digor-Kilittasi, Turkey, were used to predict the elastic modulus of intact rock (Ei) for this study. P wave velocity, S wave velocity, apparent porosity, and dry density parameters were employed as input parameters. In order to predict Ei, seven different models with two or three inputs were constructed, employing four different machine learning methods such as Support Vector Machine (SVM), Gaussian Process Regression (GPR), Ensembles of Tree (ET), and Regression Trees (RT). The performance of datasets, models, and methods was evaluated using the coefficient of determination (R2), Root Mean Squared Error (RMSE), Mean Squared Error (MSE), and Mean Absolute Error (MAE). This study presented and analyzed the performance of four machine learning methods. A ranking approach was employed to determine the best performing method and dataset. Based on these evaluations, all four machine learning techniques effectively estimate the value of Ei. While they can be used as an appropriate choice for estimating the elastic modulus of basaltic rocks, the ET approach appears to be the most successful method. However, the performance of the GPR is the worst according to model assessments. The average R² values for Model 1 through 7 of the ET method for the five test datasets are 0.97, 0.93, 0.89, 0.97, 0.91, 0.99, and 0.99, respectively. The the average R2 values for GPR from Models 1 to 7 for the five test datasets are 0.73, 0.55, 0.69, 0.48, 0.47, 0.73, 0.56, respectively. An additional indication that the ET performed better than all the other methods was the Taylor diagram, which made it simple to determine how well the model predictions matched the observations. Furthermore, these findings validate the performance of the machine learning techniques employed in this study as valuable instruments for future investigations into the modeling of complex engineering issues. The results of this study suggest that machine learning algorithms can help reduce the need for high-quality core samples and labor-intensive procedures in predicting the elastic modulus of basaltic rocks, resulting in time and cost savings.
期刊介绍:
The Earth Science Informatics [ESIN] journal aims at rapid publication of high-quality, current, cutting-edge, and provocative scientific work in the area of Earth Science Informatics as it relates to Earth systems science and space science. This includes articles on the application of formal and computational methods, computational Earth science, spatial and temporal analyses, and all aspects of computer applications to the acquisition, storage, processing, interchange, and visualization of data and information about the materials, properties, processes, features, and phenomena that occur at all scales and locations in the Earth system’s five components (atmosphere, hydrosphere, geosphere, biosphere, cryosphere) and in space (see "About this journal" for more detail). The quarterly journal publishes research, methodology, and software articles, as well as editorials, comments, and book and software reviews. Review articles of relevant findings, topics, and methodologies are also considered.