Cheng-Cheng Liu, Ze-Wei Sun, Xiao-Gang Fan, Zhi-Yong Ding, Ze-Qing Guo, Ming-Ming Du, Juan He, Tao Wu and Liu Ye
{"title":"Visualizing the quantum phase transition by using quantum steering ellipsoids in the anisotropic spin XY model","authors":"Cheng-Cheng Liu, Ze-Wei Sun, Xiao-Gang Fan, Zhi-Yong Ding, Ze-Qing Guo, Ming-Ming Du, Juan He, Tao Wu and Liu Ye","doi":"10.1088/1612-202x/ad771e","DOIUrl":null,"url":null,"abstract":"Quantum steering ellipsoids (QSEs) can serve as a useful geometric tool for describing both the strength and type of quantum correlations between two subsystems of a compound system. By employing the quantum renormalization-group method, we focus on investigating the relation between QSEs and the quantum phase transition (QPT) in the anisotropic spin XY model. The results indicate that the QPT is well visualized in terms of the shape of the QSE, i.e. it is an oblate spheroid in the spin-fluid phase and a needle in the Néel phase. Meanwhile, after several iterations of renormalization, the QSE volume V undergoes a contraction mutation, and can develop two saturated values at the critical points associated with the QPT, which correspond to two different phases: the spin-fluid phase and the Néel phase. We also find that the QSE is closely associated with quantum entanglement in the model, i.e. the volume of the QSE between blocks is more than 4π/81 when the system is in the spin-fluid phase, which indicates that the system must be entangled. Furthermore, the nonanalytic and scaling behaviors of the volume of the QSE have been analyzed in detail, and the results convince us that the quantum critical properties are connected with the behavior of the QSE.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1612-202x/ad771e","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Quantum steering ellipsoids (QSEs) can serve as a useful geometric tool for describing both the strength and type of quantum correlations between two subsystems of a compound system. By employing the quantum renormalization-group method, we focus on investigating the relation between QSEs and the quantum phase transition (QPT) in the anisotropic spin XY model. The results indicate that the QPT is well visualized in terms of the shape of the QSE, i.e. it is an oblate spheroid in the spin-fluid phase and a needle in the Néel phase. Meanwhile, after several iterations of renormalization, the QSE volume V undergoes a contraction mutation, and can develop two saturated values at the critical points associated with the QPT, which correspond to two different phases: the spin-fluid phase and the Néel phase. We also find that the QSE is closely associated with quantum entanglement in the model, i.e. the volume of the QSE between blocks is more than 4π/81 when the system is in the spin-fluid phase, which indicates that the system must be entangled. Furthermore, the nonanalytic and scaling behaviors of the volume of the QSE have been analyzed in detail, and the results convince us that the quantum critical properties are connected with the behavior of the QSE.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.