Attention-Seeker: Dynamic Self-Attention Scoring for Unsupervised Keyphrase Extraction

Erwin D. López Z., Cheng Tang, Atsushi Shimada
{"title":"Attention-Seeker: Dynamic Self-Attention Scoring for Unsupervised Keyphrase Extraction","authors":"Erwin D. López Z., Cheng Tang, Atsushi Shimada","doi":"arxiv-2409.10907","DOIUrl":null,"url":null,"abstract":"This paper proposes Attention-Seeker, an unsupervised keyphrase extraction\nmethod that leverages self-attention maps from a Large Language Model to\nestimate the importance of candidate phrases. Our approach identifies specific\ncomponents - such as layers, heads, and attention vectors - where the model\npays significant attention to the key topics of the text. The attention weights\nprovided by these components are then used to score the candidate phrases.\nUnlike previous models that require manual tuning of parameters (e.g.,\nselection of heads, prompts, hyperparameters), Attention-Seeker dynamically\nadapts to the input text without any manual adjustments, enhancing its\npractical applicability. We evaluate Attention-Seeker on four publicly\navailable datasets: Inspec, SemEval2010, SemEval2017, and Krapivin. Our results\ndemonstrate that, even without parameter tuning, Attention-Seeker outperforms\nmost baseline models, achieving state-of-the-art performance on three out of\nfour datasets, particularly excelling in extracting keyphrases from long\ndocuments.","PeriodicalId":501281,"journal":{"name":"arXiv - CS - Information Retrieval","volume":"205 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10907","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes Attention-Seeker, an unsupervised keyphrase extraction method that leverages self-attention maps from a Large Language Model to estimate the importance of candidate phrases. Our approach identifies specific components - such as layers, heads, and attention vectors - where the model pays significant attention to the key topics of the text. The attention weights provided by these components are then used to score the candidate phrases. Unlike previous models that require manual tuning of parameters (e.g., selection of heads, prompts, hyperparameters), Attention-Seeker dynamically adapts to the input text without any manual adjustments, enhancing its practical applicability. We evaluate Attention-Seeker on four publicly available datasets: Inspec, SemEval2010, SemEval2017, and Krapivin. Our results demonstrate that, even without parameter tuning, Attention-Seeker outperforms most baseline models, achieving state-of-the-art performance on three out of four datasets, particularly excelling in extracting keyphrases from long documents.
Attention-Seeker:无监督关键词提取的动态自我注意力评分
本文提出的 Attention-Seeker 是一种无监督关键词提取方法,它利用大语言模型的自我注意力图来估计候选短语的重要性。我们的方法可以识别特定的组件,如层、头和注意力向量,在这些组件中,模型对文本的关键主题给予了极大的关注。与以往需要手动调整参数(如选择头部、提示、超参数)的模型不同,Attention-Seeker 可动态适应输入文本,无需任何手动调整,从而增强了其实用性。我们在四个公开数据集上对 Attention-Seeker 进行了评估:Inspec、SemEval2010、SemEval2017 和 Krapivin。我们的结果表明,即使不调整参数,Attention-Seeker 的表现也优于大多数基线模型,在四个数据集中的三个数据集上取得了最先进的性能,尤其是在从长文档中提取关键词方面表现出色。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信