Unlocking precision: How corneal cell area analysis revolutionises post-transplant stem cell monitoring

Patrick Parkinson, Irina Makarenko, Oliver J Baylis, Gustavo S Figueiredo, Majlinda Lako, Anvar Shukurov, Francisco C Figueiredo, Laura E Wadkin
{"title":"Unlocking precision: How corneal cell area analysis revolutionises post-transplant stem cell monitoring","authors":"Patrick Parkinson, Irina Makarenko, Oliver J Baylis, Gustavo S Figueiredo, Majlinda Lako, Anvar Shukurov, Francisco C Figueiredo, Laura E Wadkin","doi":"10.1101/2024.09.17.612429","DOIUrl":null,"url":null,"abstract":"The corneal epithelium is maintained by limbal stem cells (LSCs). Dysfunction of the LSCs, resulting from chemical and thermal burns, contact lens-related disease, congenial disorders, among other conditions, leads to limbal stem cell deficiency (LSCD), a sight-threatening condition. An effective treatment of LSCD, with 76% of patients reporting regained sight up to 24 months after the operation, consists of transplanting ex-vivo cultured LSCs from the patient's other healthy eye (i.e. autologous) or donor (i.e. allogeneic) to the affected eye. The post-operative assessment of corneal recovery is crucial but relies on ponderous and generally subjective visual inspection of a large number of microscopic images of the corneal epithelial cells, relying on the personal experience of the practitioner to interpret imprecise, qualitative diagnostic criteria. From a unique library of 100,000 cornea cell images from 34 patients, we have randomly selected 10 individuals (3,668 images) to demonstrate that the frequency distribution of the epithelial cell areas is a sensitive diagnostic tool of the corneal epithelium status. After a successful operation the distribution of cell areas is rather flat, reflecting an anomalously wide range of cell areas. As the cornea recovers, the frequency distribution becomes narrower with high statistical confidence and eventually approaches that of the healthy cornea. The corneal epithelial cell shape is independent of the cornea status despite a widespread expectation that healthy cells have a hexagonal shape. We also show that the corneal epithelial cell area distribution and its variation with the depth within the cornea are specific to each patient.","PeriodicalId":501048,"journal":{"name":"bioRxiv - Biophysics","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Biophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.17.612429","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The corneal epithelium is maintained by limbal stem cells (LSCs). Dysfunction of the LSCs, resulting from chemical and thermal burns, contact lens-related disease, congenial disorders, among other conditions, leads to limbal stem cell deficiency (LSCD), a sight-threatening condition. An effective treatment of LSCD, with 76% of patients reporting regained sight up to 24 months after the operation, consists of transplanting ex-vivo cultured LSCs from the patient's other healthy eye (i.e. autologous) or donor (i.e. allogeneic) to the affected eye. The post-operative assessment of corneal recovery is crucial but relies on ponderous and generally subjective visual inspection of a large number of microscopic images of the corneal epithelial cells, relying on the personal experience of the practitioner to interpret imprecise, qualitative diagnostic criteria. From a unique library of 100,000 cornea cell images from 34 patients, we have randomly selected 10 individuals (3,668 images) to demonstrate that the frequency distribution of the epithelial cell areas is a sensitive diagnostic tool of the corneal epithelium status. After a successful operation the distribution of cell areas is rather flat, reflecting an anomalously wide range of cell areas. As the cornea recovers, the frequency distribution becomes narrower with high statistical confidence and eventually approaches that of the healthy cornea. The corneal epithelial cell shape is independent of the cornea status despite a widespread expectation that healthy cells have a hexagonal shape. We also show that the corneal epithelial cell area distribution and its variation with the depth within the cornea are specific to each patient.
实现精准:角膜细胞面积分析如何彻底改变移植后干细胞监测
角膜上皮由角膜缘干细胞(LSCs)维持。由于化学和热烧伤、接触镜相关疾病、先天性疾病等原因导致的角膜缘干细胞功能障碍,会导致角膜缘干细胞缺乏症(LSCD),这是一种威胁视力的疾病。角膜缘干细胞缺乏症的有效治疗方法是将患者另一只健康眼睛(即自体)或捐献者(即异体)体内培养的角膜缘干细胞移植到患眼,76%的患者在术后24个月内恢复了视力。角膜恢复的术后评估至关重要,但这依赖于对大量角膜上皮细胞显微图像进行深思熟虑的、通常是主观的目视检查,并依靠医生的个人经验来解释不精确的定性诊断标准。我们从一个包含 34 名患者 100,000 张角膜细胞图像的独特图书馆中随机抽取了 10 人(3,668 张图像),证明上皮细胞区域的频率分布是角膜上皮状态的灵敏诊断工具。手术成功后,细胞区域的分布相当平缓,反映出细胞区域范围异常广泛。随着角膜的恢复,频率分布变窄,统计置信度变高,最终接近健康角膜的频率分布。尽管人们普遍认为健康的角膜上皮细胞呈六角形,但角膜上皮细胞的形状与角膜状态无关。我们还发现,角膜上皮细胞的面积分布及其随角膜深度的变化是每个患者所特有的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信