Counting Flows of $b$-compatible Graphs

Houshan Fu, Xiangyu Ren, Suijie Wang
{"title":"Counting Flows of $b$-compatible Graphs","authors":"Houshan Fu, Xiangyu Ren, Suijie Wang","doi":"arxiv-2409.09634","DOIUrl":null,"url":null,"abstract":"Kochol introduced the assigning polynomial $F(G,\\alpha;k)$ to count\nnowhere-zero $(A,b)$-flows of a graph $G$, where $A$ is a finite Abelian group\nand $\\alpha$ is a $\\{0,1\\}$-assigning from a family $\\Lambda(G)$ of certain\nnonempty vertex subsets of $G$ to $\\{0,1\\}$. We introduce the concepts of\n$b$-compatible graph and $b$-compatible broken bond to give an explicit formula\nfor the assigning polynomials and to examine their coefficients. More\nspecifically, for a function $b:V(G)\\to A$, let $\\alpha_{G,b}$ be a\n$\\{0,1\\}$-assigning of $G$ such that for each $X\\in\\Lambda(G)$,\n$\\alpha_{G,b}(X)=0$ if and only if $\\sum_{v\\in X}b(v)=0$. We show that for any\n$\\{0,1\\}$-assigning $\\alpha$ of $G$, if there exists a function $b:V(G)\\to A$\nsuch that $G$ is $b$-compatible and $\\alpha=\\alpha_{G,b}$, then the assigning\npolynomial $F(G,\\alpha;k)$ has the $b$-compatible spanning subgraph expansion\n\\[ F(G,\\alpha;k)=\\sum_{\\substack{S\\subseteq E(G),\\\\G-S\\mbox{ is\n$b$-compatible}}}(-1)^{|S|}k^{m(G-S)}, \\] and is the following form\n$F(G,\\alpha;k)=\\sum_{i=0}^{m(G)}(-1)^ia_i(G,\\alpha)k^{m(G)-i}$, where each\n$a_i(G,\\alpha)$ is the number of subsets $S$ of $E(G)$ having $i$ edges such\nthat $G-S$ is $b$-compatible and $S$ contains no $b$-compatible broken bonds\nwith respect to a total order on $E(G)$. Applying the counting interpretation,\nwe also obtain unified comparison relations for the signless coefficients of\nassigning polynomials. Namely, for any $\\{0,1\\}$-assignings $\\alpha,\\alpha'$ of\n$G$, if there exist functions $b:V(G)\\to A$ and $b':V(G)\\to A'$ such that $G$\nis both $b$-compatible and $b'$-compatible, $\\alpha=\\alpha_{G,b}$,\n$\\alpha'=\\alpha_{G,b'}$ and $\\alpha(X)\\le\\alpha'(X)$ for all $X\\in\\Lambda(G)$,\nthen \\[ a_i(G,\\alpha)\\le a_i(G,\\alpha') \\quad \\mbox{ for }\\quad i=0,1,\\ldots,\nm(G). \\]","PeriodicalId":501407,"journal":{"name":"arXiv - MATH - Combinatorics","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09634","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Kochol introduced the assigning polynomial $F(G,\alpha;k)$ to count nowhere-zero $(A,b)$-flows of a graph $G$, where $A$ is a finite Abelian group and $\alpha$ is a $\{0,1\}$-assigning from a family $\Lambda(G)$ of certain nonempty vertex subsets of $G$ to $\{0,1\}$. We introduce the concepts of $b$-compatible graph and $b$-compatible broken bond to give an explicit formula for the assigning polynomials and to examine their coefficients. More specifically, for a function $b:V(G)\to A$, let $\alpha_{G,b}$ be a $\{0,1\}$-assigning of $G$ such that for each $X\in\Lambda(G)$, $\alpha_{G,b}(X)=0$ if and only if $\sum_{v\in X}b(v)=0$. We show that for any $\{0,1\}$-assigning $\alpha$ of $G$, if there exists a function $b:V(G)\to A$ such that $G$ is $b$-compatible and $\alpha=\alpha_{G,b}$, then the assigning polynomial $F(G,\alpha;k)$ has the $b$-compatible spanning subgraph expansion \[ F(G,\alpha;k)=\sum_{\substack{S\subseteq E(G),\\G-S\mbox{ is $b$-compatible}}}(-1)^{|S|}k^{m(G-S)}, \] and is the following form $F(G,\alpha;k)=\sum_{i=0}^{m(G)}(-1)^ia_i(G,\alpha)k^{m(G)-i}$, where each $a_i(G,\alpha)$ is the number of subsets $S$ of $E(G)$ having $i$ edges such that $G-S$ is $b$-compatible and $S$ contains no $b$-compatible broken bonds with respect to a total order on $E(G)$. Applying the counting interpretation, we also obtain unified comparison relations for the signless coefficients of assigning polynomials. Namely, for any $\{0,1\}$-assignings $\alpha,\alpha'$ of $G$, if there exist functions $b:V(G)\to A$ and $b':V(G)\to A'$ such that $G$ is both $b$-compatible and $b'$-compatible, $\alpha=\alpha_{G,b}$, $\alpha'=\alpha_{G,b'}$ and $\alpha(X)\le\alpha'(X)$ for all $X\in\Lambda(G)$, then \[ a_i(G,\alpha)\le a_i(G,\alpha') \quad \mbox{ for }\quad i=0,1,\ldots, m(G). \]
计算兼容 $b$ 图形的流量
Kochol 引入了赋值多项式 $F(G,\alpha;k)$来计算图 $G$ 的无处为零的 $(A,b)$流,其中 $A$ 是一个有限阿贝尔群,$\alpha$ 是一个从 $G$ 的某些非空顶点子集的族 $Lambda(G)$ 到 $\{0,1\}$的 $\{0,1\}$赋值。我们引入了$b$相容图和$b$相容断键的概念,给出了赋值多项式的明确公式,并检验了它们的系数。更具体地说,对于一个函数 $b:V(G)\to A$,让 $\alpha_{G,b}$ 是 $G$ 的一个 ${0,1\}$赋值,使得对于每个 $X\in\Lambda(G)$, $\alpha_{G,b}(X)=0$ if and only if $\sum_{v\in X}b(v)=0$.我们证明,对于 $G$ 的任意$\{0,1\}$赋值 $\alpha$,如果存在一个函数 $b:V(G)\to A$,使得 $G$ 是 $b$ 兼容的,并且 $\alpha=\alpha_{G,b}$ ,那么赋值多项式 $F(G,\alpha;k)$ 具有 $b$ 兼容的跨子图展开图([F(G,\alpha;k)=sum_{substack{S\subseteq E(G),\G-S\mbox{ is$b$-compatible}}(-1)^{|S|}k^{m(G-S)}, \]并且是下面的形式$F(G,\alpha;k)=\sum_{i=0}^{m(G)}(-1)^ia_i(G,\alpha)k^{m(G)-i}$,其中每个$a_i(G,\alpha)$是$E(G)$中具有$i$边的子集$S$的个数,使得$G-S$是$b$兼容的,并且相对于$E(G)$上的总阶,$S$不包含任何$b$兼容的断键。应用计数解释,我们还得到了赋值多项式无符号系数的统一比较关系。也就是说,对于 $G$ 的任意 $\{0,1\}$ 分配 $\alpha,\alpha'$,如果存在函数 $b:V(G)\to A$ 和 $b':这样,$G$既与$b$兼容又与$b'兼容,$\alpha=\alpha_{G,b}$,$\alpha'=\alpha_{G、b'}$ and $\alpha(X)\le\alpha'(X)$ for all $Xin\Lambda(G)$,then \[ a_i(G,\alpha)\le a_i(G,\alpha') \quad \mbox{ for }\quad i=0,1,\ldots,m(G).
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信