Perfect coalition in graphs

Doost Ali Mojdeh, Mohammad Reza Samadzadeh
{"title":"Perfect coalition in graphs","authors":"Doost Ali Mojdeh, Mohammad Reza Samadzadeh","doi":"arxiv-2409.10185","DOIUrl":null,"url":null,"abstract":"\\noindent A perfect dominating set in a graph $G=(V,E)$ is a subset $S\n\\subseteq V$ such that each vertex in $V \\setminus S$ has exactly one neighbor\nin $S$. A perfect coalition in $G$ consists of two disjoint sets of vertices\n$V_i$ and $V_j$ such that i) neither $V_i$ nor $V_j$ is a dominating set, ii)\neach vertex in $V(G) \\setminus V_i$ has at most one neighbor in $V_i$ and each\nvertex in $V(G) \\setminus V_j$ has at most one neighbor in $V_j$, and iii) $V_i\n\\cup V_j$ is a perfect dominating set. A perfect coalition partition\n(abbreviated $prc$-partition) in a graph $G$ is a vertex partition $\\pi=\n\\lbrace V_1,V_2,\\dots ,V_k \\rbrace$ such that for each set $V_i$ of $\\pi$\neither $V_i$ is a singleton dominating set, or there exists a set $V_j \\in \\pi$\nthat forms a perfect coalition with $V_i$. In this paper, we initiate the study\nof perfect coalition partitions in graphs. We obtain a bound on the number of\nperfect coalitions involving each member of a perfect coalition partition, in\nterms of maximum degree. The perfect coalition of some special graphs are\ninvestigated. The graph $G$ with $\\delta(G)=1$, the triangle-free graphs $G$\nwith prefect coalition number of order of $G$ and the trees $T$ with prefect\ncoalition number in $\\{n,n-1,n-2\\}$ where $n=|V(T)|$ are characterized.","PeriodicalId":501407,"journal":{"name":"arXiv - MATH - Combinatorics","volume":"75 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

\noindent A perfect dominating set in a graph $G=(V,E)$ is a subset $S \subseteq V$ such that each vertex in $V \setminus S$ has exactly one neighbor in $S$. A perfect coalition in $G$ consists of two disjoint sets of vertices $V_i$ and $V_j$ such that i) neither $V_i$ nor $V_j$ is a dominating set, ii) each vertex in $V(G) \setminus V_i$ has at most one neighbor in $V_i$ and each vertex in $V(G) \setminus V_j$ has at most one neighbor in $V_j$, and iii) $V_i \cup V_j$ is a perfect dominating set. A perfect coalition partition (abbreviated $prc$-partition) in a graph $G$ is a vertex partition $\pi= \lbrace V_1,V_2,\dots ,V_k \rbrace$ such that for each set $V_i$ of $\pi$ either $V_i$ is a singleton dominating set, or there exists a set $V_j \in \pi$ that forms a perfect coalition with $V_i$. In this paper, we initiate the study of perfect coalition partitions in graphs. We obtain a bound on the number of perfect coalitions involving each member of a perfect coalition partition, in terms of maximum degree. The perfect coalition of some special graphs are investigated. The graph $G$ with $\delta(G)=1$, the triangle-free graphs $G$ with prefect coalition number of order of $G$ and the trees $T$ with prefect coalition number in $\{n,n-1,n-2\}$ where $n=|V(T)|$ are characterized.
图中的完美联盟
\一个图 $G=(V,E)$ 中的完美支配集是一个子集 $S\subseteq V$,使得 $Vsetminus S$ 中的每个顶点在 $S$ 中都有一个邻居。$G$中的完美联盟由两个不相交的顶点集$V_i$和$V_j$组成,且i) $V_i$和$V_j$都不是支配集、ii) $V(G) 中的每个顶点(setminus V_i$)在 $V_i$ 中最多有一个邻居,而 $V(G) 中的每个顶点(setminus V_j$)在 $V_j$ 中最多有一个邻居,并且 iii) $V_i\cup V_j$ 是一个完美支配集。图 $G$ 中的完美联盟分区(简称 $prc$-分区)是一个顶点分区 $\pi=\lbrace V_1,V_2,\dots ,V_k \rbrace$,使得 $\pi$ 中的每个集合 $V_i$ 要么 $V_i$ 是一个单子支配集,要么存在一个 \pi$ 中的集合 $V_j 与 $V_i$ 形成完美联盟。本文开始研究图中的完美联盟分区。我们得到了涉及完美联盟分区每个成员的完美联盟数的最大阶数约束。我们还研究了一些特殊图的完美联盟。研究了$\delta(G)=1$的图$G$、完美联盟数为$G$阶的无三角形图$G$和完美联盟数为$\{n,n-1,n-2\}$(其中$n=|V(T)|$)的树$T$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信