The Complexity of Maximizing the MST-ratio

Afrouz Jabal Ameli, Faezeh Motiei, Morteza Saghafian
{"title":"The Complexity of Maximizing the MST-ratio","authors":"Afrouz Jabal Ameli, Faezeh Motiei, Morteza Saghafian","doi":"arxiv-2409.11079","DOIUrl":null,"url":null,"abstract":"Given a finite set of red and blue points in $\\mathbb{R}^d$, the MST-ratio is\nthe combined length of the Euclidean minimum spanning trees of red points and\nof blue points divided by the length of the Euclidean minimum spanning tree of\nthe union of them. The maximum MST-ratio of a point set is the maximum\nMST-ratio over all non-trivial colorings of its points by red and blue. We\nprove that the problem of finding the maximum MST-ratio of a given point set is\nNP-hard when the dimension is a part of the input. Moreover, we present a\n$O(n^2)$ running time $3$-approximation algorithm for it. As a part of the\nproof, we show that in any metric space, the maximum MST-ratio is smaller than\n$3$. Additionally, we study the average MST-ratio over all colorings of a set\nof $n$ points. We show that this average is always at least $\\frac{n-2}{n-1}$,\nand for $n$ random points uniformly distributed in a $d$-dimensional unit cube,\nthe average tends to $\\sqrt[d]{2}$ in expectation as $n$ goes to infinity.","PeriodicalId":501407,"journal":{"name":"arXiv - MATH - Combinatorics","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11079","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Given a finite set of red and blue points in $\mathbb{R}^d$, the MST-ratio is the combined length of the Euclidean minimum spanning trees of red points and of blue points divided by the length of the Euclidean minimum spanning tree of the union of them. The maximum MST-ratio of a point set is the maximum MST-ratio over all non-trivial colorings of its points by red and blue. We prove that the problem of finding the maximum MST-ratio of a given point set is NP-hard when the dimension is a part of the input. Moreover, we present a $O(n^2)$ running time $3$-approximation algorithm for it. As a part of the proof, we show that in any metric space, the maximum MST-ratio is smaller than $3$. Additionally, we study the average MST-ratio over all colorings of a set of $n$ points. We show that this average is always at least $\frac{n-2}{n-1}$, and for $n$ random points uniformly distributed in a $d$-dimensional unit cube, the average tends to $\sqrt[d]{2}$ in expectation as $n$ goes to infinity.
最大化 MST 比率的复杂性
给定 $\mathbb{R}^d$ 中红色和蓝色点的有限集合,MST-ratio 是红色点的欧氏最小生成树和蓝色点的欧氏最小生成树的总长度除以它们的联盟的欧氏最小生成树的长度。一个点集的最大 MST 比率是该点集所有非三色着色的红点和蓝点的最大 MST 比率。我们证明,当维度是输入的一部分时,求给定点集的最大 MST 比率问题是 NP 难的。此外,我们还提出了一种运行时间为 O(n^2)$ $3$ 的近似计算法。作为证明的一部分,我们证明了在任何度量空间中,最大 MST 比率都小于$3$。此外,我们还研究了一组 $n$ 点的所有着色的平均 MST 比率。我们证明,这个平均值总是至少 $\frac{n-2}{n-1}$,而且对于均匀分布在 $d$ 维单位立方体中的 $n$ 随机点,当 $n$ 变为无穷大时,平均值在期望值上趋于 $\sqrt[d]{2}$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信