{"title":"Testability modeling of aeroengine and analysis optimization method based on improved correlation matrix","authors":"Shijie Huang, Jing Cai, Dingqiang Dai","doi":"10.1177/09544100241283705","DOIUrl":null,"url":null,"abstract":"This paper aims to optimize the testability analysis method of aero-engines by presenting a testability modeling and an improved correlation matrix method. Because of strong coupling in aero-engines, the traditional testabilitsy modeling method based on graph theory is difficult to accurately express the relationship between faults and test points. Simulation technology can simulate actual work process of system. So this paper launches the research based on simulation model. Firstly, the gas path model is established according to the thermodynamic principle of aero-engines and accuracy of the model is verified. Secondly, common faults of gas path are selected. Affected parameters are obtained after injecting faults into the model, so as to obtain the relationship between faults and test points, that is, the correlation matrix. Then, after going through masses of simulations, it is found that the relationship between faults and test points can be divided into three categories: positive correlation, negative correlation and no correlation. The correlation matrix can be improved by diversifying its elements. During simulation, accuracy of the sensors are not considered. The correlation matrix is optimized with the accuracy of sensors in the gas path as a constraint, so that it is more in line with engineering practice. Finally, four testability characteristics and two testability metrics are defined, and the correlation matrix before and after improvement are analyzed and compared. It is found that the improved correlation matrix can isolate more faults on the premise of reducing test points, which proves the effectiveness of the proposed method.","PeriodicalId":54566,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers Part G-Journal of Aerospace Engineering","volume":"15 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers Part G-Journal of Aerospace Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544100241283705","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
Abstract
This paper aims to optimize the testability analysis method of aero-engines by presenting a testability modeling and an improved correlation matrix method. Because of strong coupling in aero-engines, the traditional testabilitsy modeling method based on graph theory is difficult to accurately express the relationship between faults and test points. Simulation technology can simulate actual work process of system. So this paper launches the research based on simulation model. Firstly, the gas path model is established according to the thermodynamic principle of aero-engines and accuracy of the model is verified. Secondly, common faults of gas path are selected. Affected parameters are obtained after injecting faults into the model, so as to obtain the relationship between faults and test points, that is, the correlation matrix. Then, after going through masses of simulations, it is found that the relationship between faults and test points can be divided into three categories: positive correlation, negative correlation and no correlation. The correlation matrix can be improved by diversifying its elements. During simulation, accuracy of the sensors are not considered. The correlation matrix is optimized with the accuracy of sensors in the gas path as a constraint, so that it is more in line with engineering practice. Finally, four testability characteristics and two testability metrics are defined, and the correlation matrix before and after improvement are analyzed and compared. It is found that the improved correlation matrix can isolate more faults on the premise of reducing test points, which proves the effectiveness of the proposed method.
期刊介绍:
The Journal of Aerospace Engineering is dedicated to the publication of high quality research in all branches of applied sciences and technology dealing with aircraft and spacecraft, and their support systems. "Our authorship is truly international and all efforts are made to ensure that each paper is presented in the best possible way and reaches a wide audience.
"The Editorial Board is composed of recognized experts representing the technical communities of fifteen countries. The Board Members work in close cooperation with the editors, reviewers, and authors to achieve a consistent standard of well written and presented papers."Professor Rodrigo Martinez-Val, Universidad Politécnica de Madrid, Spain
This journal is a member of the Committee on Publication Ethics (COPE).