Molecular rotors provide insight into the mechanism of formation and conversion of α-synuclein aggregates

Sian Catherine Allerton, Marina Kuimova, Francesco Antonio Aprile
{"title":"Molecular rotors provide insight into the mechanism of formation and conversion of α-synuclein aggregates","authors":"Sian Catherine Allerton, Marina Kuimova, Francesco Antonio Aprile","doi":"10.1101/2024.09.13.612428","DOIUrl":null,"url":null,"abstract":"α-synuclein is an intrinsically disordered protein forming amyloids in Parkinson's disease. Currently, detection methods predominantly report on the formation of mature amyloids but are poorly sensitive to the early-stage, toxic oligomers. Molecular rotors are fluorophores that sense changes in the viscosity of their local environment. Here, we monitor α-synuclein oligomer formation, based on fluorescence lifetime of molecular rotors. We detected oligomer formation and conversion into amyloids for wild type and two α-synuclein variants; the pathological mutant A30P and ΔP1 α-synuclein, which lacks a master regulator region of aggregation (residues 36-42). We report that A30P α-synuclein showed a similar rate of oligomer formation compared to wild type α-synuclein, whereas ΔP1 α-synuclein showed delayed oligomer formation. Additionally, both variants demonstrated a slower conversion of oligomers to amyloids. Our method provides a quantitative approach to unveiling the complex mechanism of α-synuclein aggregation which is key to understanding the pathology of Parkinson's disease.","PeriodicalId":501147,"journal":{"name":"bioRxiv - Biochemistry","volume":"54 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Biochemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.13.612428","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

α-synuclein is an intrinsically disordered protein forming amyloids in Parkinson's disease. Currently, detection methods predominantly report on the formation of mature amyloids but are poorly sensitive to the early-stage, toxic oligomers. Molecular rotors are fluorophores that sense changes in the viscosity of their local environment. Here, we monitor α-synuclein oligomer formation, based on fluorescence lifetime of molecular rotors. We detected oligomer formation and conversion into amyloids for wild type and two α-synuclein variants; the pathological mutant A30P and ΔP1 α-synuclein, which lacks a master regulator region of aggregation (residues 36-42). We report that A30P α-synuclein showed a similar rate of oligomer formation compared to wild type α-synuclein, whereas ΔP1 α-synuclein showed delayed oligomer formation. Additionally, both variants demonstrated a slower conversion of oligomers to amyloids. Our method provides a quantitative approach to unveiling the complex mechanism of α-synuclein aggregation which is key to understanding the pathology of Parkinson's disease.
分子转子有助于深入了解α-突触核蛋白聚集体的形成和转化机制
α-突触核蛋白是一种内在无序蛋白,会在帕金森病中形成淀粉样蛋白。目前,检测方法主要报告成熟淀粉样蛋白的形成,但对早期有毒低聚物的敏感性较差。分子转子是一种荧光团,能感知局部环境粘度的变化。在这里,我们根据分子转子的荧光寿命来监测α-突触核蛋白寡聚体的形成。我们检测了野生型和两种α-突触核蛋白变体(病理突变体A30P和ΔP1 α-突触核蛋白)的寡聚体形成和转化为淀粉样蛋白的情况。我们报告说,与野生型α-突触核蛋白相比,A30P α-突触核蛋白的寡聚体形成速度相似,而ΔP1 α-突触核蛋白的寡聚体形成速度较慢。此外,这两种变体的寡聚体转化为淀粉样蛋白的速度都较慢。我们的方法提供了一种定量方法来揭示α-突触核蛋白聚集的复杂机制,这是了解帕金森病病理的关键。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信