Reducing Leakage of Single-Qubit Gates for Superconducting Quantum Processors Using Analytical Control Pulse Envelopes

Eric Hyyppä, Antti Vepsäläinen, Miha Papič, Chun Fai Chan, Sinan Inel, Alessandro Landra, Wei Liu, Jürgen Luus, Fabian Marxer, Caspar Ockeloen-Korppi, Sebastian Orbell, Brian Tarasinski, Johannes Heinsoo
{"title":"Reducing Leakage of Single-Qubit Gates for Superconducting Quantum Processors Using Analytical Control Pulse Envelopes","authors":"Eric Hyyppä, Antti Vepsäläinen, Miha Papič, Chun Fai Chan, Sinan Inel, Alessandro Landra, Wei Liu, Jürgen Luus, Fabian Marxer, Caspar Ockeloen-Korppi, Sebastian Orbell, Brian Tarasinski, Johannes Heinsoo","doi":"10.1103/prxquantum.5.030353","DOIUrl":null,"url":null,"abstract":"Improving the speed and fidelity of quantum logic gates is essential to reach quantum advantage with future quantum computers. However, fast logic gates lead to increased leakage errors in superconducting quantum processors based on qubits with low anharmonicity, such as transmons. To reduce leakage errors, we propose and experimentally demonstrate two new analytical methods, Fourier ansatz spectrum tuning derivative removal by adiabatic gate (FAST DRAG) and higher-derivative (HD) DRAG, both of which enable shaping single-qubit control pulses in the frequency domain to achieve stronger suppression of leakage transitions compared to previously demonstrated pulse shapes. Using the new methods to suppress the <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>e</mi><mi>f</mi></math> transition of a transmon qubit with an anharmonicity of <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo>−</mo><mn>212</mn></math> MHz, we implement <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>R</mi><mi>X</mi></msub><mo stretchy=\"false\">(</mo><mi>π</mi><mo>/</mo><mn>2</mn><mo stretchy=\"false\">)</mo></math> gates achieving a leakage error below <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>3.0</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>5</mn></mrow></msup></math> down to a gate duration of 6.25 ns without the need for iterative closed-loop optimization. The obtained leakage error represents a 20-fold reduction in leakage compared to a conventional cosine DRAG pulse. Employing the FAST DRAG method, we further achieve an error per gate of <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo stretchy=\"false\">(</mo><mn>1.56</mn><mo>±</mo><mn>0.07</mn><mo stretchy=\"false\">)</mo><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>4</mn></mrow></msup></math> at a 7.9-ns gate duration, outperforming conventional pulse shapes both in terms of error and gate speed. Furthermore, we study error-amplifying measurements for the characterization of temporal microwave control-pulse distortions, and demonstrate that non-Markovian coherent errors caused by such distortions may be a significant source of error for sub-10-ns single-qubit gates unless corrected using predistortion.","PeriodicalId":501296,"journal":{"name":"PRX Quantum","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PRX Quantum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/prxquantum.5.030353","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Improving the speed and fidelity of quantum logic gates is essential to reach quantum advantage with future quantum computers. However, fast logic gates lead to increased leakage errors in superconducting quantum processors based on qubits with low anharmonicity, such as transmons. To reduce leakage errors, we propose and experimentally demonstrate two new analytical methods, Fourier ansatz spectrum tuning derivative removal by adiabatic gate (FAST DRAG) and higher-derivative (HD) DRAG, both of which enable shaping single-qubit control pulses in the frequency domain to achieve stronger suppression of leakage transitions compared to previously demonstrated pulse shapes. Using the new methods to suppress the ef transition of a transmon qubit with an anharmonicity of 212 MHz, we implement RX(π/2) gates achieving a leakage error below 3.0×105 down to a gate duration of 6.25 ns without the need for iterative closed-loop optimization. The obtained leakage error represents a 20-fold reduction in leakage compared to a conventional cosine DRAG pulse. Employing the FAST DRAG method, we further achieve an error per gate of (1.56±0.07)×104 at a 7.9-ns gate duration, outperforming conventional pulse shapes both in terms of error and gate speed. Furthermore, we study error-amplifying measurements for the characterization of temporal microwave control-pulse distortions, and demonstrate that non-Markovian coherent errors caused by such distortions may be a significant source of error for sub-10-ns single-qubit gates unless corrected using predistortion.

Abstract Image

利用分析控制脉冲包络减少超导量子处理器单ubit 门的泄漏
提高量子逻辑门的速度和保真度对于未来量子计算机实现量子优势至关重要。然而,在基于低非谐波性量子比特(如跨子)的超导量子处理器中,快速逻辑门会导致泄漏误差增加。为了减少泄漏误差,我们提出并在实验中演示了两种新的分析方法,即通过绝热门去除傅里叶解析谱调谐导数(FAST DRAG)和高导数(HD)DRAG,与之前演示的脉冲形状相比,这两种方法都能在频域中塑造单量子比特控制脉冲,从而实现更强的泄漏跃迁抑制。利用新方法抑制谐波频率为 -212 MHz 的跨文量子比特的漏电转换,我们实现了 RX(π/2) 栅极,在栅极持续时间为 6.25 ns 的情况下,漏电误差低于 3.0×10-5,而无需进行迭代闭环优化。与传统的余弦 DRAG 脉冲相比,所获得的泄漏误差降低了 20 倍。通过使用 FAST DRAG 方法,我们进一步实现了在 7.9 ns 栅极持续时间内每个栅极的误差为 (1.56±0.07)×10-4 ,在误差和栅极速度方面均优于传统脉冲形状。此外,我们还研究了误差放大测量方法,以确定时序微波控制脉冲失真的特征,并证明除非使用预失真进行校正,否则这种失真引起的非马尔可夫相干误差可能是 10-ns 以下单量子比特门的一个重要误差源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信