About almost covering subsets of the hypercube

Arijit Ghosh, Chandrima Kayal, Soumi Nandi
{"title":"About almost covering subsets of the hypercube","authors":"Arijit Ghosh, Chandrima Kayal, Soumi Nandi","doi":"arxiv-2409.10573","DOIUrl":null,"url":null,"abstract":"Let $\\mathbb{F}$ be a field, and consider the hypercube $\\{ 0, 1 \\}^{n}$ in\n$\\mathbb{F}^{n}$. Sziklai and Weiner (Journal of Combinatorial Theory, Series A\n2022) showed that if a polynomial $P ( X_{1}, \\dots, X_{n} ) \\in \\mathbb{F}[\nX_{1}, \\dots, X_{n}]$ vanishes on every point of the hypercube $\\{0,1\\}^{n}$\nexcept those with at most $r$ many ones then the degree of the polynomial will\nbe at least $n-r$. This is a generalization of Alon and F\\\"uredi's fundamental\nresult (European Journal of Combinatorics 1993) about polynomials vanishing on\nevery point of the hypercube except at the origin (point with all zero\ncoordinates). Sziklai and Weiner proved their interesting result using\nM\\\"{o}bius inversion formula and the Zeilberger method for proving binomial\nequalities. In this short note, we show that a stronger version of Sziklai and\nWeiner's result can be derived directly from Alon and F\\\"{u}redi's result.","PeriodicalId":501407,"journal":{"name":"arXiv - MATH - Combinatorics","volume":"48 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10573","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let $\mathbb{F}$ be a field, and consider the hypercube $\{ 0, 1 \}^{n}$ in $\mathbb{F}^{n}$. Sziklai and Weiner (Journal of Combinatorial Theory, Series A 2022) showed that if a polynomial $P ( X_{1}, \dots, X_{n} ) \in \mathbb{F}[ X_{1}, \dots, X_{n}]$ vanishes on every point of the hypercube $\{0,1\}^{n}$ except those with at most $r$ many ones then the degree of the polynomial will be at least $n-r$. This is a generalization of Alon and F\"uredi's fundamental result (European Journal of Combinatorics 1993) about polynomials vanishing on every point of the hypercube except at the origin (point with all zero coordinates). Sziklai and Weiner proved their interesting result using M\"{o}bius inversion formula and the Zeilberger method for proving binomial equalities. In this short note, we show that a stronger version of Sziklai and Weiner's result can be derived directly from Alon and F\"{u}redi's result.
关于几乎覆盖超立方体的子集
让 $\mathbb{F}$ 是一个域,并考虑 $\mathbb{F}^{n}$ 中的超立方体 $\{ 0, 1 \}^{n}$。Sziklai 和 Weiner (Journal of Combinatorial Theory, Series A2022) 证明,如果多项式 $P ( X_{1}, \dots, X_{n} ) 在 \mathbb{F}[X_{1}, \dots、X_{n}]$ 在超立方$\{0,1\}^{n}$的每个点上都消失,除了那些最多有 $r$ 个的点,那么多项式的度数至少是 $n-r$。这是对 Alon 和 F\"uredi 的基本结果(《欧洲组合学杂志》,1993 年)的概括,即多项式在超立方体的每个点上都消失,但原点(具有所有零坐标的点)除外。Sziklai 和 Weiner 使用 M"{o}bius 反转公式和 Zeilberger 方法证明了他们有趣的结果。在这篇短文中,我们证明了 Sziklai 和 Weiner 结果的更强版本可以直接从 Alon 和 F\"{u}redi 的结果中推导出来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信