Elementary symmetric partitions

Cristina BallantineCollege of the Holy Cross, George BeckDalhousie University, Mircea MercaNational University of Science and Tehnology Politehnica Bucharest, Bruce SaganMichigan State University
{"title":"Elementary symmetric partitions","authors":"Cristina BallantineCollege of the Holy Cross, George BeckDalhousie University, Mircea MercaNational University of Science and Tehnology Politehnica Bucharest, Bruce SaganMichigan State University","doi":"arxiv-2409.11268","DOIUrl":null,"url":null,"abstract":"Let e_k(x_1,...,x_l) be an elementary symmetric polynomial and let mu =\n(mu_1,...,mu_l) be an integer partition. Define pre_k(mu) to be the partition\nwhose parts are the summands in the evaluation e_k(mu_1,...,mu_l). The study of\nsuch partitions was initiated by Ballantine, Beck, and Merca who showed (among\nother things) that pre_2 is injective as a map on binary partitions of n. In\nthe present work we derive a host of identities involving the sequences which\ncount the number of parts of a given value in the image of pre_2. These include\ngenerating functions, explicit expressions, and formulas for forward\ndifferences. We generalize some of these to d-ary partitions and explore\nconnections with color partitions. Our techniques include the use of generating\nfunctions and bijections on rooted partitions. We end with a list of\nconjectures and a direction for future research.","PeriodicalId":501407,"journal":{"name":"arXiv - MATH - Combinatorics","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11268","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let e_k(x_1,...,x_l) be an elementary symmetric polynomial and let mu = (mu_1,...,mu_l) be an integer partition. Define pre_k(mu) to be the partition whose parts are the summands in the evaluation e_k(mu_1,...,mu_l). The study of such partitions was initiated by Ballantine, Beck, and Merca who showed (among other things) that pre_2 is injective as a map on binary partitions of n. In the present work we derive a host of identities involving the sequences which count the number of parts of a given value in the image of pre_2. These include generating functions, explicit expressions, and formulas for forward differences. We generalize some of these to d-ary partitions and explore connections with color partitions. Our techniques include the use of generating functions and bijections on rooted partitions. We end with a list of conjectures and a direction for future research.
基本对称分区
设 e_k(x_1,...,x_l)是一个基本对称多项式,设 mu =(mu_1,...,mu_l) 是一个整数分部。定义 pre_k(mu)为分区,其各部分是求值 e_k(mu_1,...,mu_l)中的和。对这种分区的研究是由 Ballantine、Beck 和 Merca 发起的,他们证明了(除其他外)pre_2 作为 n 的二进制分区上的映射是可注入的。其中包括生成函数、明确表达式和前差公式。我们将其中的一些方法推广到 d-ary 分区,并探索与颜色分区的联系。我们的技术包括在有根分区上使用生成函数和双射。最后,我们列出了一些猜想和未来的研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信