Subsquares in random Latin squares

Jack Allsop, Ian M. Wanless
{"title":"Subsquares in random Latin squares","authors":"Jack Allsop, Ian M. Wanless","doi":"arxiv-2409.08446","DOIUrl":null,"url":null,"abstract":"We prove that with probability $1-o(1)$ as $n \\to \\infty$, a uniformly random\nLatin square of order $n$ contains no subsquare of order $4$ or more, resolving\na conjecture of McKay and Wanless. We also show that the expected number of\nsubsquares of order 3 is bounded.","PeriodicalId":501407,"journal":{"name":"arXiv - MATH - Combinatorics","volume":"92 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08446","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We prove that with probability $1-o(1)$ as $n \to \infty$, a uniformly random Latin square of order $n$ contains no subsquare of order $4$ or more, resolving a conjecture of McKay and Wanless. We also show that the expected number of subsquares of order 3 is bounded.
随机拉丁方格中的子方格
我们证明,随着 $n \to \infty$ 的概率为 1-o(1)$ ,阶为 $n$ 的均匀随机拉丁方阵不包含阶为 $4$ 或更多的子方阵,从而解决了麦凯和万利斯的猜想。我们还证明了阶为 3 的子方格的预期数目是有界的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信