Ramsey numbers for partially ordered sets

Christian Winter
{"title":"Ramsey numbers for partially ordered sets","authors":"Christian Winter","doi":"arxiv-2409.08819","DOIUrl":null,"url":null,"abstract":"In this thesis, we present quantitative Ramsey-type results in the setting of\nfinite sets that are equipped with a partial order, so-called posets. A\nprominent example of a poset is the Boolean lattice $Q_n$, which consists of\nall subsets of $\\{1,\\dots,n\\}$, ordered by inclusion. For posets $P$ and $Q$,\nthe poset Ramsey number $R(P,Q)$ is the smallest $N$ such that no matter how\nthe elements of $Q_N$ are colored in blue and red, there is either an induced\nsubposet isomorphic to $P$ in which every element is colored blue, or an\ninduced subposet isomorphic to $Q$ in which every element is colored red. The central focus of this thesis is to investigate $R(P,Q_n)$, where $P$ is\nfixed and $n$ grows large. Our results contribute to an active area of discrete\nmathematics, which studies the existence of large homogeneous substructures in\nhost structures with local constraints, introduced for graphs by Erd\\H{o}s and\nHajnal. We provide an asymptotically tight bound on $R(P,Q_n)$ for $P$ from\nseveral classes of posets, and show a dichotomy in the asymptotic behavior of\n$R(P,Q_n)$, depending on whether $P$ contains a subposet isomorphic to one of\ntwo specific posets. A fundamental question in the study of poset Ramsey numbers is to determine\nthe asymptotic behavior of $R(Q_n,Q_n)$ for large $n$. In this dissertation, we\npresent improvements on the known lower and upper bound on $R(Q_n,Q_n)$.\nMoreover, we explore variations of the poset Ramsey setting, including\nErd\\H{o}s-Hajnal-type questions when the small forbidden poset has a\nnon-monochromatic color pattern, and so-called weak poset Ramsey numbers, which\nare concerned with non-induced subposets.","PeriodicalId":501407,"journal":{"name":"arXiv - MATH - Combinatorics","volume":"201 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08819","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this thesis, we present quantitative Ramsey-type results in the setting of finite sets that are equipped with a partial order, so-called posets. A prominent example of a poset is the Boolean lattice $Q_n$, which consists of all subsets of $\{1,\dots,n\}$, ordered by inclusion. For posets $P$ and $Q$, the poset Ramsey number $R(P,Q)$ is the smallest $N$ such that no matter how the elements of $Q_N$ are colored in blue and red, there is either an induced subposet isomorphic to $P$ in which every element is colored blue, or an induced subposet isomorphic to $Q$ in which every element is colored red. The central focus of this thesis is to investigate $R(P,Q_n)$, where $P$ is fixed and $n$ grows large. Our results contribute to an active area of discrete mathematics, which studies the existence of large homogeneous substructures in host structures with local constraints, introduced for graphs by Erd\H{o}s and Hajnal. We provide an asymptotically tight bound on $R(P,Q_n)$ for $P$ from several classes of posets, and show a dichotomy in the asymptotic behavior of $R(P,Q_n)$, depending on whether $P$ contains a subposet isomorphic to one of two specific posets. A fundamental question in the study of poset Ramsey numbers is to determine the asymptotic behavior of $R(Q_n,Q_n)$ for large $n$. In this dissertation, we present improvements on the known lower and upper bound on $R(Q_n,Q_n)$. Moreover, we explore variations of the poset Ramsey setting, including Erd\H{o}s-Hajnal-type questions when the small forbidden poset has a non-monochromatic color pattern, and so-called weak poset Ramsey numbers, which are concerned with non-induced subposets.
部分有序集合的拉姆齐数
在这篇论文中,我们提出了在无穷集的背景下的定量拉姆齐式结果,这些无穷集都配有一个部分阶,即所谓的poset。正集的一个主要例子是布尔网格 $Q_n$,它由 $\{1,\dots,n\}$ 的所有子集组成,通过包含排序。对于正集 $P$ 和 $Q$,正集拉姆齐数 $R(P,Q)$ 是最小的 $N$,使得无论 $Q_N$ 的元素如何被染成蓝色和红色,要么存在一个与 $P$ 同构的诱导子集,其中每个元素都被染成蓝色,要么存在一个与 $Q$ 同构的诱导子集,其中每个元素都被染成红色。本论文的核心重点是研究 $R(P,Q_n)$,其中 $P$ 是固定的,而 $n$ 越来越大。我们的结果有助于离散数学中一个活跃的领域,即研究由 Erd\H{o}s 和 Hajnal 针对图引入的具有局部约束的宿主结构中大型同质子结构的存在性。我们为来自几类正集的 $P$ 提供了一个关于 $R(P,Q_n)$的渐近紧约束,并展示了 $R(P,Q_n)$的渐近行为中的二分法,这取决于 $P$ 是否包含与两个特定正集中的一个同构的子集。研究正集拉姆齐数的一个基本问题是确定 $R(Q_n,Q_n)$ 在大 $n$ 时的渐近行为。在这篇论文中,我们提出了对 $R(Q_n,Q_n)$ 的已知下界和上界的改进。此外,我们还探索了 poset 拉姆齐设置的变体,包括当小的禁止 poset 具有非单色颜色模式时的埃尔德/霍伊斯-哈伊纳尔型问题,以及所谓的弱 poset 拉姆齐数,它关注的是非诱导子集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信