Critical Thresholds for Maximum Cardinality Matching on General Hypergraphs

Christopher Sumnicht, Jamison W. Weber, Dhanush R. Giriyan, Arunabha Sen
{"title":"Critical Thresholds for Maximum Cardinality Matching on General Hypergraphs","authors":"Christopher Sumnicht, Jamison W. Weber, Dhanush R. Giriyan, Arunabha Sen","doi":"arxiv-2409.09155","DOIUrl":null,"url":null,"abstract":"Significant work has been done on computing the ``average'' optimal solution\nvalue for various $\\mathsf{NP}$-complete problems using the Erd\\\"{o}s-R\\'{e}nyi\nmodel to establish \\emph{critical thresholds}. Critical thresholds define\nnarrow bounds for the optimal solution of a problem instance such that the\nprobability that the solution value lies outside these bounds vanishes as the\ninstance size approaches infinity. In this paper, we extend the\nErd\\\"{o}s-R\\'{e}nyi model to general hypergraphs on $n$ vertices and $M$\nhyperedges. We consider the problem of determining critical thresholds for the\nlargest cardinality matching, and we show that for $M=o(1.155^n)$ the size of\nthe maximum cardinality matching is almost surely 1. On the other hand, if\n$M=\\Theta(2^n)$ then the size of the maximum cardinality matching is\n$\\Omega(n^{\\frac12-\\gamma})$ for an arbitrary $\\gamma >0$. Lastly, we address\nthe gap where $\\Omega(1.155^n)=M=o(2^n)$ empirically through computer\nsimulations.","PeriodicalId":501407,"journal":{"name":"arXiv - MATH - Combinatorics","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Significant work has been done on computing the ``average'' optimal solution value for various $\mathsf{NP}$-complete problems using the Erd\"{o}s-R\'{e}nyi model to establish \emph{critical thresholds}. Critical thresholds define narrow bounds for the optimal solution of a problem instance such that the probability that the solution value lies outside these bounds vanishes as the instance size approaches infinity. In this paper, we extend the Erd\"{o}s-R\'{e}nyi model to general hypergraphs on $n$ vertices and $M$ hyperedges. We consider the problem of determining critical thresholds for the largest cardinality matching, and we show that for $M=o(1.155^n)$ the size of the maximum cardinality matching is almost surely 1. On the other hand, if $M=\Theta(2^n)$ then the size of the maximum cardinality matching is $\Omega(n^{\frac12-\gamma})$ for an arbitrary $\gamma >0$. Lastly, we address the gap where $\Omega(1.155^n)=M=o(2^n)$ empirically through computer simulations.
一般超图上最大卡方匹配的临界阈值
在计算各种$\mathsf{NP}$-complete问题的 "平均 "最优解值方面,已经做了大量工作,这些工作利用Erd"{o}s-R\'{e}nyimodel 建立了 "临界阈值"(emph{critical thresholds})。临界阈值定义了问题实例最优解的窄边界,当实例大小接近无穷大时,解值位于这些边界之外的概率就会消失。在本文中,我们将埃尔德(Erd\"{o}s-R\'{e}nyi )模型扩展到了具有 $n$ 顶点和 $M$ 超通道的一般超图。我们考虑了确定最大心率匹配临界阈值的问题,并证明对于 $M=o(1.155^n)$,最大心率匹配的大小几乎肯定为 1。另一方面,如果$M=theta(2^n)$,那么在任意$\gamma>0$的情况下,最大卡方匹配的大小为$Omega(n^{\frac12-\gamma})$。最后,我们通过计算机模拟来解决$\Omega(1.155^n)=M=o(2^n)$的经验差距。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信