{"title":"Trees and near-linear stable sets","authors":"Tung Nguyen, Alex Scott, Paul Seymour","doi":"arxiv-2409.09397","DOIUrl":null,"url":null,"abstract":"When $H$ is a forest, the Gy\\'arf\\'as-Sumner conjecture implies that every\ngraph $G$ with no induced subgraph isomorphic to $H$ and with bounded clique\nnumber has a stable set of linear size. We cannot prove that, but we prove that\nevery such graph $G$ has a stable set of size $|G|^{1-o(1)}$. If $H$ is not a\nforest, there need not be such a stable set. Second, we prove that when $H$ is a ``multibroom'', there {\\em is} a stable\nset of linear size. As a consequence, we deduce that all multibrooms satisfy a\n``fractional colouring'' version of the Gy\\'arf\\'as-Sumner conjecture. Finally, we discuss extensions of our results to the multicolour setting.","PeriodicalId":501407,"journal":{"name":"arXiv - MATH - Combinatorics","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09397","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
When $H$ is a forest, the Gy\'arf\'as-Sumner conjecture implies that every
graph $G$ with no induced subgraph isomorphic to $H$ and with bounded clique
number has a stable set of linear size. We cannot prove that, but we prove that
every such graph $G$ has a stable set of size $|G|^{1-o(1)}$. If $H$ is not a
forest, there need not be such a stable set. Second, we prove that when $H$ is a ``multibroom'', there {\em is} a stable
set of linear size. As a consequence, we deduce that all multibrooms satisfy a
``fractional colouring'' version of the Gy\'arf\'as-Sumner conjecture. Finally, we discuss extensions of our results to the multicolour setting.