Trees and near-linear stable sets

Tung Nguyen, Alex Scott, Paul Seymour
{"title":"Trees and near-linear stable sets","authors":"Tung Nguyen, Alex Scott, Paul Seymour","doi":"arxiv-2409.09397","DOIUrl":null,"url":null,"abstract":"When $H$ is a forest, the Gy\\'arf\\'as-Sumner conjecture implies that every\ngraph $G$ with no induced subgraph isomorphic to $H$ and with bounded clique\nnumber has a stable set of linear size. We cannot prove that, but we prove that\nevery such graph $G$ has a stable set of size $|G|^{1-o(1)}$. If $H$ is not a\nforest, there need not be such a stable set. Second, we prove that when $H$ is a ``multibroom'', there {\\em is} a stable\nset of linear size. As a consequence, we deduce that all multibrooms satisfy a\n``fractional colouring'' version of the Gy\\'arf\\'as-Sumner conjecture. Finally, we discuss extensions of our results to the multicolour setting.","PeriodicalId":501407,"journal":{"name":"arXiv - MATH - Combinatorics","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09397","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

When $H$ is a forest, the Gy\'arf\'as-Sumner conjecture implies that every graph $G$ with no induced subgraph isomorphic to $H$ and with bounded clique number has a stable set of linear size. We cannot prove that, but we prove that every such graph $G$ has a stable set of size $|G|^{1-o(1)}$. If $H$ is not a forest, there need not be such a stable set. Second, we prove that when $H$ is a ``multibroom'', there {\em is} a stable set of linear size. As a consequence, we deduce that all multibrooms satisfy a ``fractional colouring'' version of the Gy\'arf\'as-Sumner conjecture. Finally, we discuss extensions of our results to the multicolour setting.
树和近线稳定集
当 $H$ 是森林时,Gy\'arf\'as-Sumner 猜想意味着,每一个没有与 $H$ 同构的诱导子图并且具有有界剪辑数的图 $G$ 都有一个线性大小的稳定集合。我们无法证明这一点,但我们证明了每一个这样的图 $G$ 都有一个大小为 $|G|^{1-o(1)}$ 的稳定集。如果 $H$ 不是前述图,就不需要这样的稳定集。其次,我们证明了当 $H$ 是一个 "多蘑菇 "时,{em is} 存在一个线性大小的稳定集。因此,我们推导出所有的多重房间都满足 Gy\'arf\'as-Sumner 猜想的 "分数着色 "版本。最后,我们讨论了我们的结果在多色环境中的扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信