$E_A$-cordial labeling of graphs and its implications for $A$-antimagic labeling of trees

Sylwia Cichacz
{"title":"$E_A$-cordial labeling of graphs and its implications for $A$-antimagic labeling of trees","authors":"Sylwia Cichacz","doi":"arxiv-2409.09136","DOIUrl":null,"url":null,"abstract":"If $A$ is a finite Abelian group, then a labeling $f \\colon E (G) \\rightarrow\nA$ of the edges of some graph $G$ induces a vertex labeling on $G$; the vertex\n$u$ receives the label $\\sum_{v\\in N(u)}f (v)$, where $N(u)$ is an open\nneighborhood of the vertex $u$. A graph $G$ is $E_A$-cordial if there is an\nedge-labeling such that (1) the edge label classes differ in size by at most\none and (2) the induced vertex label classes differ in size by at most one.\nSuch a labeling is called $E_A$-cordial. In the literature, so far only\n$E_A$-cordial labeling in cyclic groups has been studied. The corresponding problem was studied by Kaplan, Lev and Roditty. Namely,\nthey introduced $A^*$-antimagic labeling as a generalization of antimagic\nlabeling \\cite{ref_KapLevRod}. Simply saying, for a tree of order $|A|$ the\n$A^*$-antimagic labeling is such $E_A$-cordial labeling that the label $0$ is\nprohibited on the edges. In this paper, we give necessary and sufficient conditions for paths to be\n$E_A$-cordial for any cyclic $A$. We also show that the conjecture for\n$A^*$-antimagic labeling of trees posted in \\cite{ref_KapLevRod} is not true.","PeriodicalId":501407,"journal":{"name":"arXiv - MATH - Combinatorics","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

If $A$ is a finite Abelian group, then a labeling $f \colon E (G) \rightarrow A$ of the edges of some graph $G$ induces a vertex labeling on $G$; the vertex $u$ receives the label $\sum_{v\in N(u)}f (v)$, where $N(u)$ is an open neighborhood of the vertex $u$. A graph $G$ is $E_A$-cordial if there is an edge-labeling such that (1) the edge label classes differ in size by at most one and (2) the induced vertex label classes differ in size by at most one. Such a labeling is called $E_A$-cordial. In the literature, so far only $E_A$-cordial labeling in cyclic groups has been studied. The corresponding problem was studied by Kaplan, Lev and Roditty. Namely, they introduced $A^*$-antimagic labeling as a generalization of antimagic labeling \cite{ref_KapLevRod}. Simply saying, for a tree of order $|A|$ the $A^*$-antimagic labeling is such $E_A$-cordial labeling that the label $0$ is prohibited on the edges. In this paper, we give necessary and sufficient conditions for paths to be $E_A$-cordial for any cyclic $A$. We also show that the conjecture for $A^*$-antimagic labeling of trees posted in \cite{ref_KapLevRod} is not true.
图的 E_A$ 主标签及其对树的 A$ 主标签的影响
如果 $A$ 是一个有限阿贝尔群,那么某个图 $G$ 的边的标签 $f \colon E (G) \rightarrowA$ 会在 $G$ 上诱导一个顶点标签;顶点 $u$ 接收标签 $\sum_{v\in N(u)}f (v)$, 其中 $N(u)$ 是顶点 $u$ 的一个开放邻域。如果存在边标签,且(1)边标签类的大小最多相差一个,(2)诱导顶点标签类的大小最多相差一个,则图 $G$ 是 $E_A$-cordial。在文献中,迄今为止只研究过循环群中的 $E_A$-cordial 标签。卡普兰、列夫和罗迪提研究了相应的问题。也就是说,他们引入了 $A^*$-antimagic labeling 作为 antimagic labeling 的广义化(antimagic labeling \cite{ref_KapLevRod})。简单地说,对于一棵阶数为 $|A|$ 的树,$A^*$-反魔法标注就是这样的$E_A$-核心标注,即在边上禁止标注 $0$。在本文中,我们给出了任意循环 $A$ 的路径成为 $E_A$-cordial 的必要条件和充分条件。我们还证明了 \cite{ref_KapLevRod}中关于树的 $A^*$-antimagic 标签的猜想不成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信