{"title":"A Geophysical-Drilling-Hydrochemical Coupled Method for Accurate Detection of Concealed Water-Conducting Faults in Coal Mines","authors":"Tuo Lu, Haodong Liu, Hailiang Jia, Bo Wang","doi":"10.3390/w16182619","DOIUrl":null,"url":null,"abstract":"The detection of concealed water-conducting structures is essential for preventing water inrush disasters. Aiming to mitigate the limitations inherent in using any single technique, a comprehensive approach that combines integrated mining geophysical exploration, hydrogeological drilling, and hydrochemical exploration (GDH) is proposed for the exploration of concealed water-conducting structures. By conducting a thorough analysis of the background geological data obtained through surface exploration, potentially concealed water-conducting structures can be predicted. Then, a combination of the seismic reflection method (SRM) and mine transient electromagnetic method (MTEM) can be used to detect the location and water-bearing properties of the target structures. Afterwards, the target drilling areas are defined by the anomalies detected by the integrated mine geophysical technique, and the drilling method can directly acquire the hydrogeological information of water-conducting structures and verify the results of the geophysical methods. By means of hydrochemical analysis, inrush water sources and their runoff conditions can be identified, and the spatial relationship betweenof the source aquifers and mining space can be determined; hence, the properties, scale, and configuration of the water-conducting structures can finally be evaluated. Employing a water-conducting fault in a mine as a case study, we verified that the integrated method overcomes the limitations and possible biases of each method, providing a multiple-method solution that can accurately detect concealed water-conducting structures to help prevent water inrush disasters.","PeriodicalId":23788,"journal":{"name":"Water","volume":"187 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3390/w16182619","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The detection of concealed water-conducting structures is essential for preventing water inrush disasters. Aiming to mitigate the limitations inherent in using any single technique, a comprehensive approach that combines integrated mining geophysical exploration, hydrogeological drilling, and hydrochemical exploration (GDH) is proposed for the exploration of concealed water-conducting structures. By conducting a thorough analysis of the background geological data obtained through surface exploration, potentially concealed water-conducting structures can be predicted. Then, a combination of the seismic reflection method (SRM) and mine transient electromagnetic method (MTEM) can be used to detect the location and water-bearing properties of the target structures. Afterwards, the target drilling areas are defined by the anomalies detected by the integrated mine geophysical technique, and the drilling method can directly acquire the hydrogeological information of water-conducting structures and verify the results of the geophysical methods. By means of hydrochemical analysis, inrush water sources and their runoff conditions can be identified, and the spatial relationship betweenof the source aquifers and mining space can be determined; hence, the properties, scale, and configuration of the water-conducting structures can finally be evaluated. Employing a water-conducting fault in a mine as a case study, we verified that the integrated method overcomes the limitations and possible biases of each method, providing a multiple-method solution that can accurately detect concealed water-conducting structures to help prevent water inrush disasters.
期刊介绍:
Water (ISSN 2073-4441) is an international and cross-disciplinary scholarly journal covering all aspects of water including water science and technology, and the hydrology, ecology and management of water resources. It publishes regular research papers, critical reviews and short communications, and there is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.