Approximation by Fourier sums on the classes of generalized Poisson integrals

Anatoly Serdyuk, Tetiana Stepaniuk
{"title":"Approximation by Fourier sums on the classes of generalized Poisson integrals","authors":"Anatoly Serdyuk, Tetiana Stepaniuk","doi":"arxiv-2409.10629","DOIUrl":null,"url":null,"abstract":"We present a survey of results related to the solution of\nKolmogorov--Nikolsky problem for Fourier sums on the classes of generalized\nPoisson integrals $C^{\\alpha,r}_{\\beta,p}$, which consists in finding of\nasymptotic equalities for exact upper boundaries o f uniform norms of\ndeviations of partial Fourier sums on the classes of $2\\pi$--periodic functions\n$C^{\\alpha,r}_{\\beta,p}$, which are defined as convolutions of the functions,\nwhich belong to the unit balls pf the spaces $L_{p}$, $1\\leq p\\leq \\infty$,\nwith generalized Poisson kernels $$\nP_{\\alpha,r,\\beta}(t)=\\sum\\limits_{k=1}^{\\infty}e^{-\\alpha k^{r}}\\cos\n\\big(kt-\\frac{\\beta\\pi}{2}\\big), \\ \\alpha>0, r>0, \\ \\beta\\in \\mathbb{R}.$$","PeriodicalId":501145,"journal":{"name":"arXiv - MATH - Classical Analysis and ODEs","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Classical Analysis and ODEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10629","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present a survey of results related to the solution of Kolmogorov--Nikolsky problem for Fourier sums on the classes of generalized Poisson integrals $C^{\alpha,r}_{\beta,p}$, which consists in finding of asymptotic equalities for exact upper boundaries o f uniform norms of deviations of partial Fourier sums on the classes of $2\pi$--periodic functions $C^{\alpha,r}_{\beta,p}$, which are defined as convolutions of the functions, which belong to the unit balls pf the spaces $L_{p}$, $1\leq p\leq \infty$, with generalized Poisson kernels $$ P_{\alpha,r,\beta}(t)=\sum\limits_{k=1}^{\infty}e^{-\alpha k^{r}}\cos \big(kt-\frac{\beta\pi}{2}\big), \ \alpha>0, r>0, \ \beta\in \mathbb{R}.$$
用傅里叶和对广义泊松积分类进行逼近
我们介绍了与解决广义泊松积分$C^{\alpha,r}_{\beta,p}$类上的傅里叶和的科尔莫戈罗夫--尼科尔斯基问题相关的结果概览,该问题包括为2\pi$--周期函数$C^{\alpha、r}_{\beta,p}$,它们被定义为函数的卷积,属于空间 $L_{p}$, $1\leq p\leq \infty$的单位球、with generalized Poisson kernels $$P_{\alpha,r,\beta}(t)=\sum\limits_{k=1}^{\infty}e^{-alpha k^{r}}\cos\big(kt-\frac\{beta\pi}{2}\big),\alpha>0, r>0, \ \beta\in \mathbb{R}。$$
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信