Differential spinors for $\mathrm{G}_2^*$ and isotropic structures

C. S. Shahbazi, Alejandro Gil-García
{"title":"Differential spinors for $\\mathrm{G}_2^*$ and isotropic structures","authors":"C. S. Shahbazi, Alejandro Gil-García","doi":"arxiv-2409.08553","DOIUrl":null,"url":null,"abstract":"We obtain a correspondence between irreducible real differential spinors on\npseudo-Riemannian manifolds $(M,g)$ of signature $(4,3)$ and solutions to an\nassociated differential system for three-forms that satisfy a homogeneous\nalgebraic equation of order two in the K\\\"ahler-Atiyah bundle of $(M,g)$. In\nparticular, we obtain an intrinsic algebraic characterization of\n$\\mathrm{G}_2^*$-structures and we provide the first explicit characterization\nof isotropic irreducible spinors in signature $(4,3)$ parallel under a general\nconnection on the spinor bundle, which we apply to the spinorial lift of metric\nconnections with torsion.","PeriodicalId":501113,"journal":{"name":"arXiv - MATH - Differential Geometry","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Differential Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08553","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We obtain a correspondence between irreducible real differential spinors on pseudo-Riemannian manifolds $(M,g)$ of signature $(4,3)$ and solutions to an associated differential system for three-forms that satisfy a homogeneous algebraic equation of order two in the K\"ahler-Atiyah bundle of $(M,g)$. In particular, we obtain an intrinsic algebraic characterization of $\mathrm{G}_2^*$-structures and we provide the first explicit characterization of isotropic irreducible spinors in signature $(4,3)$ parallel under a general connection on the spinor bundle, which we apply to the spinorial lift of metric connections with torsion.
$\mathrm{G}_2^*$ 和各向同性结构的差分旋量
我们得到了签名为$(4,3)$的伪黎曼流形$(M,g)$上的不可还原实微分旋子与满足$(M,g)$的K\"ahler-Atiyah束中的二阶同次代数方程的三形式的相关微分系统解之间的对应关系。特别是,我们得到了$\mathrm{G}_2^*$结构的内在代数描述,并首次明确描述了各向同性不可还原旋量在旋量束上的一般连接下平行于签名$(4,3)$的特征,我们将其应用于具有扭转的度量连接的旋量提升。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信