Nesterov's method of dichotomy via Order Oracle: The problem of optimizing a two-variable function on a square

Boris Chervonenkis, Andrei Krasnov, Alexander Gasnikov, Aleksandr Lobanov
{"title":"Nesterov's method of dichotomy via Order Oracle: The problem of optimizing a two-variable function on a square","authors":"Boris Chervonenkis, Andrei Krasnov, Alexander Gasnikov, Aleksandr Lobanov","doi":"arxiv-2409.11077","DOIUrl":null,"url":null,"abstract":"The challenges of black box optimization arise due to imprecise responses and\nlimited output information. This article describes new results on optimizing\nmultivariable functions using an Order Oracle, which provides access only to\nthe order between function values and with some small errors. We obtained\nconvergence rate estimates for the one-dimensional search method (golden ratio\nmethod) under the condition of oracle inaccuracy, as well as convergence\nresults for the algorithm on a \"square\" (also with noise), which outperforms\nits alternatives. The results obtained are similar to those in problems with\noracles providing significantly more information about the optimized function.\nAdditionally, the practical application of the algorithm has been demonstrated\nin maximizing a preference function, where the parameters are the acidity and\nsweetness of the drink. This function is expected to be convex or at least\nquasi-convex.","PeriodicalId":501286,"journal":{"name":"arXiv - MATH - Optimization and Control","volume":"201 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Optimization and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The challenges of black box optimization arise due to imprecise responses and limited output information. This article describes new results on optimizing multivariable functions using an Order Oracle, which provides access only to the order between function values and with some small errors. We obtained convergence rate estimates for the one-dimensional search method (golden ratio method) under the condition of oracle inaccuracy, as well as convergence results for the algorithm on a "square" (also with noise), which outperforms its alternatives. The results obtained are similar to those in problems with oracles providing significantly more information about the optimized function. Additionally, the practical application of the algorithm has been demonstrated in maximizing a preference function, where the parameters are the acidity and sweetness of the drink. This function is expected to be convex or at least quasi-convex.
通过 Order Oracle 的涅斯捷罗夫二分法:优化正方形上的双变量函数问题
由于响应不精确和输出信息有限,黑盒优化面临挑战。本文介绍了使用阶次甲骨文优化多变量函数的新结果,阶次甲骨文只提供函数值之间的阶次,而且误差很小。我们获得了甲骨文不准确条件下一维搜索方法(黄金比率法)的收敛率估计值,以及 "正方形"(也有噪声)上的算法收敛结果,其性能优于其他算法。此外,该算法在最大化偏好函数(参数为饮料的酸度和甜度)中的实际应用也得到了证明。这个函数预计是凸函数或至少是准凸函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信