Hierarchical Nash Equilibrium over Variational Equilibria via Fixed-point Set Expression of Quasi-nonexpansive Operator

Shota Matsuo, Keita Kume, Isao Yamada
{"title":"Hierarchical Nash Equilibrium over Variational Equilibria via Fixed-point Set Expression of Quasi-nonexpansive Operator","authors":"Shota Matsuo, Keita Kume, Isao Yamada","doi":"arxiv-2409.11094","DOIUrl":null,"url":null,"abstract":"The equilibrium selection problem in the generalized Nash equilibrium problem\n(GNEP) has recently been studied as an optimization problem, defined over the\nset of all variational equilibria achievable first through a non-cooperative\ngame among players. However, to make such a selection fairly for all players,\nwe have to rely on an unrealistic assumption, that is, the availability of a\nreliable center not possible to cause any bias for all players. In this paper,\nwe propose a new equilibrium selection achievable by solving a further GNEP,\nnamed the hierarchical Nash equilibrium problem (HNEP), within only the\nplayers. The HNEP covers existing optimization-based equilibrium selections as\nits simplest cases, while the general style of the HNEP can ensure a fair\nequilibrium selection without assuming any trusted center or randomness. We\nalso propose an iterative algorithm for the HNEP as an application of the\nhybrid steepest descent method to a variational inequality newly defined over\nthe fixed point set of a quasi-nonexpansive operator. Numerical experiments\nshow the effectiveness of the proposed equilibrium selection via the HNEP.","PeriodicalId":501286,"journal":{"name":"arXiv - MATH - Optimization and Control","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Optimization and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The equilibrium selection problem in the generalized Nash equilibrium problem (GNEP) has recently been studied as an optimization problem, defined over the set of all variational equilibria achievable first through a non-cooperative game among players. However, to make such a selection fairly for all players, we have to rely on an unrealistic assumption, that is, the availability of a reliable center not possible to cause any bias for all players. In this paper, we propose a new equilibrium selection achievable by solving a further GNEP, named the hierarchical Nash equilibrium problem (HNEP), within only the players. The HNEP covers existing optimization-based equilibrium selections as its simplest cases, while the general style of the HNEP can ensure a fair equilibrium selection without assuming any trusted center or randomness. We also propose an iterative algorithm for the HNEP as an application of the hybrid steepest descent method to a variational inequality newly defined over the fixed point set of a quasi-nonexpansive operator. Numerical experiments show the effectiveness of the proposed equilibrium selection via the HNEP.
通过准无展开算子的定点集合表达实现变式均衡上的分层纳什均衡
最近,人们把广义纳什均衡问题(GNEP)中的均衡选择问题作为一个最优化问题来研究,它定义在通过博弈者之间的非合作博弈首先可以达到的所有变式均衡的集合上。然而,要公平地为所有博弈者做出这样的选择,我们必须依赖于一个不切实际的假设,即可靠中心的存在不可能对所有博弈者造成任何偏差。在本文中,我们提出了一种新的均衡选择方法,它可以通过求解更进一步的 GNEP(即分层纳什均衡问题,Hierarchical Nash Equilibrium problem,HNEP)来实现。HNEP 涵盖了现有的基于优化的最简单均衡选择,而 HNEP 的一般风格可以确保在不假定任何可信中心或随机性的情况下进行公平均衡选择。我们还提出了一种 HNEP 的迭代算法,它是混合最陡下降法在准无穷算子定点集上新定义的变分不等式中的应用。数值实验证明了通过 HNEP 进行均衡选择的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信