Study on the Effect of Liquefiable Overburden Foundations of Rockfill Dams Based on a Pore Pressure Model

IF 3 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES
Water Pub Date : 2024-09-18 DOI:10.3390/w16182649
Zhuxin Li, Hao Zou, Shengqi Jian, Zhongxu Li, Hengxing Lin, Xiang Yu, Minghao Li
{"title":"Study on the Effect of Liquefiable Overburden Foundations of Rockfill Dams Based on a Pore Pressure Model","authors":"Zhuxin Li, Hao Zou, Shengqi Jian, Zhongxu Li, Hengxing Lin, Xiang Yu, Minghao Li","doi":"10.3390/w16182649","DOIUrl":null,"url":null,"abstract":"China’s southwestern region boasts abundant hydropower resources. However, the area is prone to frequent strong earthquakes. The areas surrounding dam sites typically have deep overburden, and the liquefaction of saturated sand foundations by earthquakes poses significant safety risks to the construction of high dams in the southwest. The effects of liquefaction and reinforcing measures on the foundations of rockfill dams on liquefiable overburden under seismic action are currently the subject of somewhat unsystematic investigations. The paper utilizes the total stress and effective stress methods, based on the equivalent linear model, to perform numerical simulations on the overburden foundations of rockfill dams. The study explores how factors such as dam height, overburden thickness, liquefiable layer depth, liquefiable layer thickness, ground motion intensity, and seismic wave characteristics affect the liquefaction of the overburden foundations. Additionally, it examines how rockfill dams impact the dynamic response, considering the liquefaction effects in the overburden. The results show that although the total stress method, which ignores the cumulative evolution of pore pressure during liquefaction, can reveal the basic response trend of the dam, its results in predicting the acceleration response are significantly biased compared to those of the effective stress method, which comprehensively considers the cumulative changes in liquefaction pore pressure. Specifically, when the effect of soil liquefaction is considered, the predicted acceleration response is reduced compared to that when liquefaction is not considered, with the reduction ranging from 4% to 30%; with increases in the thickness and burial depth of the liquefiable layer, the effective stress method considering liquefaction significantly reduces the predicted peak acceleration; the effect of liquefiable soil on the attenuation of the speed response is more sensitive to the low-frequency portion of the seismic wave. The study’s findings are a significant source of reference for the planning and building of rockfill dams on liquefiable overburden.","PeriodicalId":23788,"journal":{"name":"Water","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3390/w16182649","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

China’s southwestern region boasts abundant hydropower resources. However, the area is prone to frequent strong earthquakes. The areas surrounding dam sites typically have deep overburden, and the liquefaction of saturated sand foundations by earthquakes poses significant safety risks to the construction of high dams in the southwest. The effects of liquefaction and reinforcing measures on the foundations of rockfill dams on liquefiable overburden under seismic action are currently the subject of somewhat unsystematic investigations. The paper utilizes the total stress and effective stress methods, based on the equivalent linear model, to perform numerical simulations on the overburden foundations of rockfill dams. The study explores how factors such as dam height, overburden thickness, liquefiable layer depth, liquefiable layer thickness, ground motion intensity, and seismic wave characteristics affect the liquefaction of the overburden foundations. Additionally, it examines how rockfill dams impact the dynamic response, considering the liquefaction effects in the overburden. The results show that although the total stress method, which ignores the cumulative evolution of pore pressure during liquefaction, can reveal the basic response trend of the dam, its results in predicting the acceleration response are significantly biased compared to those of the effective stress method, which comprehensively considers the cumulative changes in liquefaction pore pressure. Specifically, when the effect of soil liquefaction is considered, the predicted acceleration response is reduced compared to that when liquefaction is not considered, with the reduction ranging from 4% to 30%; with increases in the thickness and burial depth of the liquefiable layer, the effective stress method considering liquefaction significantly reduces the predicted peak acceleration; the effect of liquefiable soil on the attenuation of the speed response is more sensitive to the low-frequency portion of the seismic wave. The study’s findings are a significant source of reference for the planning and building of rockfill dams on liquefiable overburden.
基于孔隙压力模型的堆石坝可液化覆盖层地基效应研究
中国西南地区拥有丰富的水力资源。然而,该地区强震频发。坝址周边地区一般都有较深的覆盖层,地震对饱和砂地基的液化作用给西南地区高坝建设带来了极大的安全隐患。对于地震作用下可液化覆盖层上的堆石坝地基的液化影响和加固措施,目前的研究还不够系统。本文利用基于等效线性模型的总应力法和有效应力法对堆石坝的覆土地基进行了数值模拟。研究探讨了坝高、覆土厚度、可液化层深度、可液化层厚度、地动烈度和地震波特性等因素如何影响覆土地基的液化。此外,考虑到覆盖层的液化效应,还研究了堆石坝对动力响应的影响。结果表明,虽然忽略液化过程中孔隙压力累积变化的总应力法可以揭示大坝的基本响应趋势,但与全面考虑液化孔隙压力累积变化的有效应力法相比,其预测加速度响应的结果存在明显偏差。具体来说,考虑土体液化效应时,预测的加速度反应比不考虑液化效应时有所减小,减小幅度在 4% 到 30% 之间;随着可液化层厚度和埋深的增加,考虑液化效应的有效应力法显著降低了预测的峰值加速度;可液化土体对速度反应衰减的影响对地震波的低频部分更为敏感。研究结果对在可液化覆盖层上规划和建造堆石坝具有重要的参考价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Water
Water WATER RESOURCES-
CiteScore
5.80
自引率
14.70%
发文量
3491
审稿时长
19.85 days
期刊介绍: Water (ISSN 2073-4441) is an international and cross-disciplinary scholarly journal covering all aspects of water including water science and technology, and the hydrology, ecology and management of water resources. It publishes regular research papers, critical reviews and short communications, and there is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信