Qualitative Properties of $k-$Center Problems

Vo Si Trong Long, Nguyen Mau Nam, Jacob Sharkansky, Nguyen Dong Yen
{"title":"Qualitative Properties of $k-$Center Problems","authors":"Vo Si Trong Long, Nguyen Mau Nam, Jacob Sharkansky, Nguyen Dong Yen","doi":"arxiv-2409.12091","DOIUrl":null,"url":null,"abstract":"In this paper, we study generalized versions of the k-center problem, which\ninvolves finding k circles of the smallest possible equal radius that cover a\nfinite set of points in the plane. By utilizing the Minkowski gauge function,\nwe extend this problem to generalized balls induced by various convex sets in\nfinite dimensions, rather than limiting it to circles in the plane. First, we\nestablish several fundamental properties of the global optimal solutions to\nthis problem. We then introduce the notion of local optimal solutions and\nprovide a sufficient condition for their existence. We also provide several\nillustrative examples to clarify the proposed problems.","PeriodicalId":501286,"journal":{"name":"arXiv - MATH - Optimization and Control","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Optimization and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.12091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study generalized versions of the k-center problem, which involves finding k circles of the smallest possible equal radius that cover a finite set of points in the plane. By utilizing the Minkowski gauge function, we extend this problem to generalized balls induced by various convex sets in finite dimensions, rather than limiting it to circles in the plane. First, we establish several fundamental properties of the global optimal solutions to this problem. We then introduce the notion of local optimal solutions and provide a sufficient condition for their existence. We also provide several illustrative examples to clarify the proposed problems.
k-$中心问题的定性特性
在本文中,我们研究了 k 中心问题的广义版本,该问题涉及寻找覆盖平面内无限点集的最小等半径的 k 个圆。通过利用闵科夫斯基规函数,我们将这个问题扩展到由各种无限维凸集引起的广义球,而不是局限于平面中的圆。首先,我们建立了该问题全局最优解的几个基本性质。然后,我们引入了局部最优解的概念,并提供了它们存在的充分条件。我们还提供了几个示例来阐明所提出的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信