Controllability Problems for the Heat Equation in a Half-Plane Controlled by the Neumann Boundary Condition with a Point-Wise Control

Larissa Fardigola, Kateryna Khalina
{"title":"Controllability Problems for the Heat Equation in a Half-Plane Controlled by the Neumann Boundary Condition with a Point-Wise Control","authors":"Larissa Fardigola, Kateryna Khalina","doi":"arxiv-2409.10169","DOIUrl":null,"url":null,"abstract":"In the paper, the problems of controllability and approximate controllability\nare studied for the control system $w_t=\\Delta w$,\n$w_{x_1}(0,x_2,t)=u(t)\\delta(x_2)$, $x_1>0$, $x_2\\in\\mathbb R$, $t\\in(0,T)$,\nwhere $u\\in L^\\infty(0,T)$ is a control. To this aid, it is investigated the\nset $\\mathcal{R}_T(0)\\subset L^2((0,+\\infty)\\times\\mathbb R)$ of its end states\nwhich are reachable from $0$. It is established that a function\n$f\\in\\mathcal{R}_T(0)$ can be represented in the form $f(x)=g\\big(|x|^2\\big)$\na.e. in $(0,+\\infty)\\times\\mathbb R$ where $g\\in L^2(0,+\\infty)$. In fact, we\nreduce the problem dealing with functions from $L^2((0,+\\infty)\\times\\mathbb\nR)$ to a problem dealing with functions from $L^2(0,+\\infty)$. Both a necessary\nand sufficient condition for controllability and a sufficient condition for\napproximate controllability in a given time $T$ under a control $u$ bounded by\na given constant are obtained in terms of solvability of a Markov power moment\nproblem. Using the Laguerre functions (forming an orthonormal basis of\n$L^2(0,+\\infty)$), necessary and sufficient conditions for approximate\ncontrollability and numerical solutions to the approximate controllability\nproblem are obtained. It is also shown that there is no initial state that is\nnull-controllable in a given time $T$. The results are illustrated by an\nexample.","PeriodicalId":501286,"journal":{"name":"arXiv - MATH - Optimization and Control","volume":"187 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Optimization and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the paper, the problems of controllability and approximate controllability are studied for the control system $w_t=\Delta w$, $w_{x_1}(0,x_2,t)=u(t)\delta(x_2)$, $x_1>0$, $x_2\in\mathbb R$, $t\in(0,T)$, where $u\in L^\infty(0,T)$ is a control. To this aid, it is investigated the set $\mathcal{R}_T(0)\subset L^2((0,+\infty)\times\mathbb R)$ of its end states which are reachable from $0$. It is established that a function $f\in\mathcal{R}_T(0)$ can be represented in the form $f(x)=g\big(|x|^2\big)$ a.e. in $(0,+\infty)\times\mathbb R$ where $g\in L^2(0,+\infty)$. In fact, we reduce the problem dealing with functions from $L^2((0,+\infty)\times\mathbb R)$ to a problem dealing with functions from $L^2(0,+\infty)$. Both a necessary and sufficient condition for controllability and a sufficient condition for approximate controllability in a given time $T$ under a control $u$ bounded by a given constant are obtained in terms of solvability of a Markov power moment problem. Using the Laguerre functions (forming an orthonormal basis of $L^2(0,+\infty)$), necessary and sufficient conditions for approximate controllability and numerical solutions to the approximate controllability problem are obtained. It is also shown that there is no initial state that is null-controllable in a given time $T$. The results are illustrated by an example.
半平面内受诺伊曼边界条件控制的热方程的可控性问题与点式控制
本文研究了控制系统 $w_t=\Delta w$, $w_{x_1}(0,x_2,t)=u(t)\delta(x_2)$, $x_1>0$, $x_2\in\mathbb R$, $t\in(0,T)$ 的可控性和近似可控性问题,其中 $u\in L^\infty(0,T)$ 是一个控制。为此,研究了$^2((0,+\infty)\times\mathbb R)$的子集$\mathcal{R}_T(0)\subset L^2((0,+\infty)\times\mathbb R)$,它的结束状态可以从$0$到达。可以确定的是,函数$f/in/mathcal{R}_T(0)$可以用$f(x)=g/big(|x|^2\big)$的形式表示,即在$(0,+\infty)\times\mathbb R$中,其中$g/in L^2(0,+\infty)$。事实上,把处理来自 $L^2((0,+\infty)\times\mathbbR)$的函数的问题引申为处理来自 $L^2(0,+\infty)$的函数的问题。根据马尔可夫幂矩问题的可解性,得到了可控性的必要条件和充分条件,以及在给定时间 $T$ 内,在由给定常数约束的控制 $u$ 下近似可控性的充分条件。利用拉盖尔函数(构成$L^2(0,+\infty)$的正交基),得到了近似可控性的必要条件和充分条件以及近似可控性问题的数值解。同时还证明了在给定时间 $T$ 内不存在完全可控的初始状态。举例说明了结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信