{"title":"The Oxidative Chlorination of Hydrocarbons I: The Deacon Reaction. The Oxidative Chlorination of Saturated C1 and C2 Hydrocarbons","authors":"M. R. Flid","doi":"10.1134/S2070050424700119","DOIUrl":null,"url":null,"abstract":"<p>The author considers the main patterns characteristic of the processes of hydrogen chloride oxidation (the Deacon reaction) and oxidative methane and ethane chlorination. It is shown that the most widely recognized and best studied catalysts of these processes are copper chloride systems that are based on different supports and contain alkali and rare-earth metal chlorides, which reduce the entrainment of an active phase from the surface of a catalyst with a simultaneous increase in its activity. The prospects for using ruthenium catalysts are also noted. The main kinetic and technological patterns of oxychlorination are considered. Conditions are described that allow the yield of target products (lower methane chlorides) to be increased in the oxychlorination of methane and vinyl chloride during the oxychlorination of ethane. Variants of reactor units for oxychlorination are proposed.</p>","PeriodicalId":507,"journal":{"name":"Catalysis in Industry","volume":"16 3","pages":"217 - 243"},"PeriodicalIF":0.7000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis in Industry","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S2070050424700119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The author considers the main patterns characteristic of the processes of hydrogen chloride oxidation (the Deacon reaction) and oxidative methane and ethane chlorination. It is shown that the most widely recognized and best studied catalysts of these processes are copper chloride systems that are based on different supports and contain alkali and rare-earth metal chlorides, which reduce the entrainment of an active phase from the surface of a catalyst with a simultaneous increase in its activity. The prospects for using ruthenium catalysts are also noted. The main kinetic and technological patterns of oxychlorination are considered. Conditions are described that allow the yield of target products (lower methane chlorides) to be increased in the oxychlorination of methane and vinyl chloride during the oxychlorination of ethane. Variants of reactor units for oxychlorination are proposed.
期刊介绍:
The journal covers the following topical areas:
Analysis of specific industrial catalytic processes: Production and use of catalysts in branches of industry: chemical, petrochemical, oil-refining, pharmaceutical, organic synthesis, fuel-energetic industries, environment protection, biocatalysis; technology of industrial catalytic processes (generalization of practical experience, improvements, and modernization); technology of catalysts production, raw materials and equipment; control of catalysts quality; starting, reduction, passivation, discharge, storage of catalysts; catalytic reactors.Theoretical foundations of industrial catalysis and technologies: Research, studies, and concepts : search for and development of new catalysts and new types of supports, formation of active components, and mechanochemistry in catalysis; comprehensive studies of work-out catalysts and analysis of deactivation mechanisms; studies of the catalytic process at different scale levels (laboratory, pilot plant, industrial); kinetics of industrial and newly developed catalytic processes and development of kinetic models; nonlinear dynamics and nonlinear phenomena in catalysis: multiplicity of stationary states, stepwise changes in regimes, etc. Advances in catalysis: Catalysis and gas chemistry; catalysis and new energy technologies; biocatalysis; nanocatalysis; catalysis and new construction materials.History of the development of industrial catalysis.