Observability inequalities for heat equations with potentials

Jiuyi Zhu, Jinping Zhuge
{"title":"Observability inequalities for heat equations with potentials","authors":"Jiuyi Zhu, Jinping Zhuge","doi":"arxiv-2409.09476","DOIUrl":null,"url":null,"abstract":"This paper is mainly concerned with the observability inequalities for heat\nequations with time-dependent Lipschtiz potentials. The observability\ninequality for heat equations asserts that the total energy of a solution is\nbounded above by the energy localized in a subdomain with an observability\nconstant. For a bounded measurable potential $V = V(x,t)$, the factor in the\nobservability constant arising from the Carleman estimate is best known to be\n$\\exp(C\\|V\\|_{\\infty}^{2/3})$ (even for time-independent potentials). In this\npaper, we show that, for Lipschtiz potentials, this factor can be replaced by\n$\\exp(C(\\|\\nabla V\\|_{\\infty}^{1/2} +\\|\\partial_tV\\|_{\\infty}^{1/3} ))$, which\nimproves the previous bound $\\exp(C\\|V\\|_{\\infty}^{2/3})$ in some typical\nscenarios. As a consequence, with such a Lipschitz potential, we obtain a\nquantitative regular control in a null controllability problem. In addition,\nfor the one-dimensional heat equation with some time-independent bounded\nmeasurable potential $V = V(x)$, we obtain the optimal observability constant.","PeriodicalId":501286,"journal":{"name":"arXiv - MATH - Optimization and Control","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Optimization and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09476","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper is mainly concerned with the observability inequalities for heat equations with time-dependent Lipschtiz potentials. The observability inequality for heat equations asserts that the total energy of a solution is bounded above by the energy localized in a subdomain with an observability constant. For a bounded measurable potential $V = V(x,t)$, the factor in the observability constant arising from the Carleman estimate is best known to be $\exp(C\|V\|_{\infty}^{2/3})$ (even for time-independent potentials). In this paper, we show that, for Lipschtiz potentials, this factor can be replaced by $\exp(C(\|\nabla V\|_{\infty}^{1/2} +\|\partial_tV\|_{\infty}^{1/3} ))$, which improves the previous bound $\exp(C\|V\|_{\infty}^{2/3})$ in some typical scenarios. As a consequence, with such a Lipschitz potential, we obtain a quantitative regular control in a null controllability problem. In addition, for the one-dimensional heat equation with some time-independent bounded measurable potential $V = V(x)$, we obtain the optimal observability constant.
有势热方程的可观测性不等式
本文主要研究具有时变 Lipschtiz 势的热方程的可观测性不等式。热方程的可观测性不等式断言,解的总能量由局部子域中具有可观测性常数的能量限定。对于有界可测的势 $V = V(x,t)$,卡勒曼估计所产生的可观测性常数的因子已知为$\exp(C\|V\|_\{infty}^{2/3})$(即使对于与时间无关的势)。在本文中,我们证明了对于利普西奇兹电势,这个系数可以被$\exp(C(\|\nabla V\|_{\infty}^{1/2} +\|\partial_tV\|_{\infty}^{1/3} ))$ 取代,这在某些典型情况下改进了之前的约束$exp(C\|V\|_{\infty}^{2/3})$。因此,有了这样一个 Lipschitz 势,我们就能在空可控性问题中获得定量正则控制。此外,对于一维热方程与某种时间无关的有界可测量势 $V = V(x)$,我们得到了最优可观测常数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信