A kernel-based PEM estimator for forward model

Giulio Fattore, Marco Peruzzo, Giacomo Sartori, Mattia Zorzi
{"title":"A kernel-based PEM estimator for forward model","authors":"Giulio Fattore, Marco Peruzzo, Giacomo Sartori, Mattia Zorzi","doi":"arxiv-2409.09679","DOIUrl":null,"url":null,"abstract":"This paper addresses the problem of learning the impulse responses\ncharacterizing forward models by means of a regularized kernel-based Prediction\nError Method (PEM). The common approach to accomplish that is to approximate\nthe system with a high-order stable ARX model. However, such choice induces a\ncertain undesired prior information in the system that we want to estimate. To\novercome this issue, we propose a new kernel-based paradigm which is formulated\ndirectly in terms of the impulse responses of the forward model and leading to\nthe identification of a high-order MAX model. The most challenging step is the\nestimation of the kernel hyperparameters optimizing the marginal likelihood.\nThe latter, indeed, does not admit a closed form expression. We propose a\nmethod for evaluating the marginal likelihood which makes possible the\nhyperparameters estimation. Finally, some numerical results showing the\neffectiveness of the method are presented.","PeriodicalId":501286,"journal":{"name":"arXiv - MATH - Optimization and Control","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Optimization and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09679","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper addresses the problem of learning the impulse responses characterizing forward models by means of a regularized kernel-based Prediction Error Method (PEM). The common approach to accomplish that is to approximate the system with a high-order stable ARX model. However, such choice induces a certain undesired prior information in the system that we want to estimate. To overcome this issue, we propose a new kernel-based paradigm which is formulated directly in terms of the impulse responses of the forward model and leading to the identification of a high-order MAX model. The most challenging step is the estimation of the kernel hyperparameters optimizing the marginal likelihood. The latter, indeed, does not admit a closed form expression. We propose a method for evaluating the marginal likelihood which makes possible the hyperparameters estimation. Finally, some numerical results showing the effectiveness of the method are presented.
基于核的前向模型 PEM 估计器
本文通过基于正则化核的预测误差法(PEM)来解决学习前向模型脉冲响应特征的问题。常用的方法是用高阶稳定 ARX 模型来逼近系统。然而,这种选择会在我们想要估计的系统中引起某些不想要的先验信息。为了克服这个问题,我们提出了一种基于核的新范式,它直接根据前向模型的脉冲响应进行表述,从而识别出高阶 MAX 模型。最具挑战性的步骤是优化边际似然的核超参数估计。我们提出了一种评估边际似然的方法,这使得超参数估计成为可能。最后,一些数值结果显示了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信