Quantile Fourier regressions for decision making under uncertainty

Arash Khojaste, Geoffrey Pritchard, Golbon Zakeri
{"title":"Quantile Fourier regressions for decision making under uncertainty","authors":"Arash Khojaste, Geoffrey Pritchard, Golbon Zakeri","doi":"arxiv-2409.10455","DOIUrl":null,"url":null,"abstract":"Weconsider Markov decision processes arising from a Markov model of an\nunderlying natural phenomenon. Such phenomena are usually periodic (e.g.\nannual) in time, and so the Markov processes modelling them must be\ntime-inhomogeneous, with cyclostationary rather than stationary behaviour. We\ndescribe a technique for constructing such processes that allows for periodic\nvariations both in the values taken by the process and in the serial dependence\nstructure. We include two illustrative numerical examples: a hydropower\nscheduling problem and a model of offshore wind power integration.","PeriodicalId":501286,"journal":{"name":"arXiv - MATH - Optimization and Control","volume":"69 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Optimization and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10455","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Weconsider Markov decision processes arising from a Markov model of an underlying natural phenomenon. Such phenomena are usually periodic (e.g. annual) in time, and so the Markov processes modelling them must be time-inhomogeneous, with cyclostationary rather than stationary behaviour. We describe a technique for constructing such processes that allows for periodic variations both in the values taken by the process and in the serial dependence structure. We include two illustrative numerical examples: a hydropower scheduling problem and a model of offshore wind power integration.
用于不确定情况下决策的量子傅立叶回归
我们考虑的是由基本自然现象的马尔可夫模型所产生的马尔可夫决策过程。这些现象在时间上通常是周期性的(例如每年一次),因此模拟这些现象的马尔可夫过程必须是时间均质的,具有周期静止而非静止行为。我们描述了一种构建此类过程的技术,它允许过程取值和序列依赖结构中的周期性变化。我们列举了两个数值示例:一个水电调度问题和一个离岸风电集成模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信